Iain M Hagan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5200115/publications.pdf

Version: 2024-02-01

147801 114465 4,244 67 31 63 h-index citations g-index papers 70 70 70 3463 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A TOR (target of rapamycin) and nutritional phosphoproteome of fission yeast reveals novel targets in networks conserved in humans. Open Biology, 2021, 11, 200405.	3.6	4
2	Release from cell cycle arrest with Cdk4/6 inhibitors generates highly synchronized cell cycle progression in human cell culture. Open Biology, 2020, 10, 200200.	3.6	27
3	Import of extracellular ATP in yeast and man modulates AMPK and TORC1 signalling. Journal of Cell Science, 2019, 132, .	2.0	19
4	Preparation of Protein Extracts from <i>Schizosaccharomyces pombe</i> Using Trichloroacetic Acid Precipitation. Cold Spring Harbor Protocols, 2017, 2017, pdb.prot091579.	0.3	19
5	Large-Scale Immunoprecipitation from Fission Yeast Cell Extracts. Cold Spring Harbor Protocols, 2017, 2017, pdb.prot091595.	0.3	5
6	Small-Scale Immunoprecipitation from Fission Yeast Cell Extracts. Cold Spring Harbor Protocols, 2017, 2017, pdb.prot091587.	0.3	6
7	Elementary Protein Analysis in Schizosaccharomyces pombe. Cold Spring Harbor Protocols, 2017, 2017, pdb.top079806.	0.3	1
8	Dialogue between centrosomal entrance and exit scaffold pathways regulates mitotic commitment. Journal of Cell Biology, 2017, 216, 2795-2812.	5.2	12
9	Immunofluorescence Microscopy of <i>Schizosaccharomyces pombe</i> Using Chemical Fixation. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot091017.	0.3	12
10	Fixed-Cell Imaging of Schizosaccharomyces pombe. Cold Spring Harbor Protocols, 2016, 2016, pdb.top079830.	0.3	2
11	Synchronizing Progression of Schizosaccharomyces pombe Cells from Prophase through Mitosis and into S Phase with nda3-KM311 Arrest Release. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot091256.	0.3	3
12	Synchronizing Progression of <i>Schizosaccharomyces pombe</i> Cells from G ₂ through Repeated Rounds of Mitosis and S Phase with <i>cdc25-22</i> Arrest Release. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot091264.	0.3	7
13	Analysis of the <i>Schizosaccharomyces pombe</i> Cell Cycle. Cold Spring Harbor Protocols, 2016, 2016, pdb.top082800.	0.3	17
14	Cell Cycle Synchronization of <i>Schizosaccharomyces pombe</i> by Centrifugal Elutriation of Small Cells. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot091231.	0.3	9
15	Chromatin and Cell Wall Staining of <i>Schizosaccharomyces pombe</i> . Cold Spring Harbor Protocols, 2016, 2016, pdb.prot091025.	0.3	14
16	Staining Fission Yeast Filamentous Actin with Fluorescent Phalloidin Conjugates. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot091033.	0.3	9
17	Cell Cycle Synchronization of <i>Schizosaccharomyces pombe</i> by Lactose Gradient Centrifugation to Isolate Small Cells. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot091249.	0.3	2
18	The Centrosome and Its Duplication Cycle. Cold Spring Harbor Perspectives in Biology, 2015, 7, a015800.	5 . 5	203

#	Article	IF	Citations
19	Nic1 Inactivation Enables Stable Isotope Labeling with 13C615N4-Arginine in Schizosaccharomyces pombe. Molecular and Cellular Proteomics, 2015, 14, 243-250.	3.8	9
20	A PP1–PP2A phosphatase relay controls mitotic progression. Nature, 2015, 517, 94-98.	27.8	162
21	Extending the Schizosaccharomyces pombe Molecular Genetic Toolbox. PLoS ONE, 2014, 9, e97683.	2.5	51
22	Removal of Centrosomal PP1 by NIMA Kinase Unlocks the MPF Feedback Loop to Promote Mitotic Commitment in S.Âpombe. Current Biology, 2013, 23, 213-222.	3.9	33
23	Spatial control of mitotic commitment in fission yeast. Biochemical Society Transactions, 2013, 41, 1766-1771.	3.4	21
24	Mutation of a conserved residue enhances sensitivity of analogue sensitized kinases to generate a novel approach for mitotic studies in fission yeast. Journal of Cell Science, 2013, 126, 5052-61.	2.0	13
25	Centrosomal MPF triggers the mitotic and morphogenetic switches of fission yeast. Nature Cell Biology, 2013, 15, 88-95.	10.3	65
26	The S. pombe cytokinesis NDR kinase Sid2 activates Fin1 NIMA kinase to control mitotic commitment through Pom1/Wee1. Nature Cell Biology, 2012, 14, 738-745.	10.3	39
27	The Renaissance or the cuckoo clock. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3625-3634.	4.0	19
28	Augmented Annotation of the Schizosaccharomyces pombe Genome Reveals Additional Genes Required for Growth and Viability. Genetics, 2011, 187, 1207-1217.	2.9	26
29	Brr6 drives the <i>Schizosaccharomyces pombe</i> spindle pole body nuclear envelope insertion/extrusion cycle. Journal of Cell Biology, 2011, 195, 467-484.	5.2	54
30	Programmed fluctuations in sense/antisense transcript ratios drive sexual differentiation in <i>S. pombe</i> . Molecular Systems Biology, 2011, 7, 559.	7.2	41
31	Polo, Greatwall, and Protein Phosphatase PP2A Jostle for Pole Position. PLoS Genetics, 2011, 7, e1002213.	3.5	1
32	The <i>S. pombe</i> mitotic regulator Cut12 promotes spindle pole body activation and integration into the nuclear envelope. Journal of Cell Biology, 2009, 185, 875-888.	5.2	43
33	Stress-regulated kinase pathways in the recovery of tip growth and microtubule dynamics following osmotic stress in <i>S. pombe </i> Journal of Cell Science, 2008, 121, 4055-4068.	2.0	30
34	The spindle pole body plays a key role in controlling mitotic commitment in the fission yeast <i>Schizosaccharomyces pombe</i> . Biochemical Society Transactions, 2008, 36, 1097-1101.	3.4	23
35	Suppression of the Schizosaccharomyces pombe Âcut12.1 Cell-Cycle Defect by Mutations in cdc25 and Genes Involved in Transcriptional and Translational Control. Genetics, 2007, 176, 73-83.	2.9	19
36	Schizosaccharomyces pombe protein phosphatase 1 in mitosis, endocytosis and a partnership with Wsh3/Tea4 to control polarised growth. Journal of Cell Science, 2007, 120, 3589-3601.	2.0	53

#	Article	IF	CITATIONS
37	S. pombe CLASP needs dynein, not EB1 or CLIP170, to induce microtubule instability and slows polymerization rates at cell tips in a dynein-dependent manner. Genes and Development, 2006, 20, 2421-2436.	5.9	53
38	Polo kinase links the stress pathway to cell cycle control and tip growth in fission yeast. Nature, 2005, 435, 507-512.	27.8	99
39	Multiple Reaction Monitoring to Identify Sites of Protein Phosphorylation with High Sensitivity. Molecular and Cellular Proteomics, 2005, 4, 1134-1144.	3.8	195
40	The Centrosomal Kinase Nek2 Displays Elevated Levels of Protein Expression in Human Breast Cancer. Cancer Research, 2004, 64, 7370-7376.	0.9	167
41	Recruitment of NIMA kinase shows that maturation of the S. pombe spindle-pole body occurs over consecutive cell cycles and reveals a role for NIMA in modulating SIN activity. Genes and Development, 2004, 18, 1007-1021.	5.9	92
42	The Mitotic Spindle and Genome Segregation. , 2004, , 207-223.		0
43	S. pombe Aurora Kinase/Survivin Is Required for Chromosome Condensation and the Spindle Checkpoint Attachment Response. Current Biology, 2003, 13, 590-597.	3.9	133
44	A ?marker switch? approach for targeted mutagenesis of genes in Schizosaccharomyces pombe. Yeast, 2003, 20, 587-594.	1.7	32
45	Physical and functional interactions between polo kinase and the spindle pole component Cut12 regulate mitotic commitment in S. pombe. Genes and Development, 2003, 17, 1507-1523.	5.9	54
46	A nuclear protein in Schizosaccharomyces pombe with homology to the human tumour suppressor Fhit has decapping activity. Molecular Microbiology, 2002, 46, 49-62.	2.5	29
47	Schizosaccharomyces pombe NIMA-related kinase, Fin1, regulates spindle formation and an affinity of Polo for the SPB. EMBO Journal, 2002, 21, 3096-3107.	7.8	63
48	plo1+ regulates gene transcription at the M-G1 interval during the fission yeast mitotic cell cycle. EMBO Journal, 2002, 21, 5745-5755.	7.8	36
49	The role of Plo1 kinase in mitotic commitment and septation in Schizosaccharomyces pombe. EMBO Journal, 2001, 20, 1259-1270.	7.8	134
50	The <i>S. pombe </i> aurora-related kinase Ark1 associates with mitotic structures in a stage dependent manner and is required for chromosome segregation. Journal of Cell Science, 2001, 114, 4371-4384.	2.0	129
51	MTOC formation during mitotic exit in fission yeast. Journal of Cell Science, 2001, 114, 4521-4532.	2.0	65
52	A New Genetic Method for Isolating Functionally Interacting Genes: High plo1+-Dependent Mutants and Their Suppressors Define Genes in Mitotic and Septation Pathways in Fission Yeast. Genetics, 2000, 155, 1521-1534.	2.9	24
53	Plo1 Kinase Recruitment to the Spindle Pole Body and Its Role in Cell Division in <i>Schizosaccharomyces pombe</i> . Molecular Biology of the Cell, 1999, 10, 2771-2785.	2.1	136
54	The COP9/signalosome complex is conserved in fission yeast and has a role in S phase. Current Biology, 1999, 9, 1427-1433.	3.9	151

#	Article	IF	Citations
55	The microtubule organizing centers of Schizosaccharomyces pombe. Current Topics in Developmental Biology, 1999, 49, 133-159.	2.2	29
56	Vectors for the expression of tagged proteins in Schizosaccharomyces pombe. Gene, 1998, 221, 59-68.	2.2	212
57	12 Immunological Approaches to the Study of Protein Localization in Yeast. Methods in Microbiology, 1998, , 201-221.	0.8	6
58	FH3, A Domain Found in Formins, Targets the Fission Yeast Formin Fus1 to the Projection Tip During Conjugation. Journal of Cell Biology, 1998, 141, 1217-1228.	5.2	156
59	Mal3, the Fission Yeast Homologue of the Human APC-interacting Protein EB-1 Is Required for Microtubule Integrity and the Maintenance of Cell Form. Journal of Cell Biology, 1997, 139, 717-728.	5.2	208
60	Forces acting on the fission yeast anaphase spindle. , 1996, 34, 69-75.		19
61	The chk1 pathway is required to prevent mitosis following cell-cycle arrest at â€~start'. Current Biology, 1995, 5, 1179-1190.	3.9	55
62	The basics of immunofluorescence video-microscopy for mammalian and microbial systems. Trends in Cell Biology, 1995, 5, 328-332.	7.9	15
63	Completing the next phase of the cycle: Kyoto to Cambridge. Trends in Cell Biology, 1994, 4, 437-438.	7.9	0
64	Kinesin-related cut 7 protein associates with mitotic and meiotic spindles in fission yeast. Nature, 1992, 356, 74-76.	27.8	255
65	Novel potential mitotic motor protein encoded by the fission yeast cut7+ gene. Nature, 1990, 347, 563-566.	27.8	366
66	Intramitotic controls in the fission yeast Schizosaccharomyces pombe: the effect of cell size on spindle length and the timing of mitotic events Journal of Cell Biology, 1990, 110, 1617-1621.	5.2	46
67	Growth Polarity And Cytokinesis In Fission Yeast: The Role Of The Cytoskeleton. Journal of Cell Science, 1986, 1986, 229-241.	2.0	205