Jerome Extermann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5199732/publications.pdf Version: 2024-02-01

IEDOME EXTEDMANN

#	Article	IF	CITATIONS
1	Statistical distortion of supervised learning predictions in optical microscopy induced by image compression. Scientific Reports, 2022, 12, 3464.	3.3	2
2	High resolution optical projection tomography platform for multispectral imaging of the mouse gut. Biomedical Optics Express, 2021, 12, 3619.	2.9	5
3	Brain imaging with extended-focus optical coherence tomography at different scales and spectral ranges (Conference Presentation). , 2019, , .		Ο
4	lmaging of cortical structures and microvasculature using extended-focus optical coherence tomography at 13  μm. Optics Letters, 2018, 43, 1782.	3.3	8
5	3D Time-lapse Imaging and Quantification of Mitochondrial Dynamics. Scientific Reports, 2017, 7, 43275.	3.3	14
6	NIR-emitting and photo-thermal active nanogold as mitochondria-specific probes. Biomaterials Science, 2017, 5, 966-971.	5.4	17
7	Statistical parametric mapping of stimuli evoked changes in total blood flow velocity in the mouse cortex obtained with extended-focus optical coherence microscopy. Biomedical Optics Express, 2017, 8, 1.	2.9	6
8	Optical projection tomography for rapid whole mouse brain imaging. Biomedical Optics Express, 2017, 8, 5637.	2.9	26
9	Interferometric synthetic aperture microscopy for extended focus optical coherence microscopy. Optics Express, 2017, 25, 30807.	3.4	8
10	Visible spectrum extended-focus optical coherence microscopy for label-free sub-cellular tomography. Biomedical Optics Express, 2017, 8, 3343.	2.9	39
11	Three dimensional time lapse imaging of live cell mitochondria with photothermal optical lock-in optical coherence microscopy (Conference Presentation). , 2016, , .		0
12	Label-free fast 3D coherent imaging reveals pancreatic islet micro-vascularization and dynamic blood flow. Biomedical Optics Express, 2016, 7, 4569.	2.9	10
13	Longitudinal three-dimensional visualisation of autoimmune diabetes by functional optical coherence imaging. Diabetologia, 2016, 59, 550-559.	6.3	30
14	Statistical parametric mapping of stimuli-evoked changes in quantitative blood flow using extended-focus optical coherence microscopy (Conference Presentation). , 2016, , .		0
15	Harmonic Nanoparticles for Regenerative Research. Journal of Visualized Experiments, 2014, , .	0.3	1
16	Optical Coherence Microscopy From Tissue to Cell. , 2014, , .		0
17	Discriminability of tryptophan containing dipeptides using quantum control. Applied Physics B: Lasers and Optics, 2013, 111, 541-549.	2.2	7
18	Optimal Dynamic Discrimination in Tryptophan-Containing Dipeptides. EPJ Web of Conferences, 2013, 41, 07012.	0.3	0

JEROME EXTERMANN

#	Article	IF	CITATIONS
19	Highâ€Speed Tracking of Murine Cardiac Stem Cells by Harmonic Nanodoublers. Small, 2012, 8, 2752-2756.	10.0	34
20	Harmonic Nanoparticles: High‧peed Tracking of Murine Cardiac Stem Cells by Harmonic Nanodoublers (Small 17/2012). Small, 2012, 8, 2614-2614.	10.0	0
21	Harmonic Nanocrystals for Biolabeling: A Survey of Optical Properties and Biocompatibility. ACS Nano, 2012, 6, 2542-2549.	14.6	174
22	Ensemble and Individual Characterization of the Nonlinear Optical Properties of ZnO and BaTiO ₃ Nanocrystals. Journal of Physical Chemistry C, 2011, 115, 15140-15146.	3.1	54
23	Spectral phase, amplitude, and spatial modulation from ultraviolet to infrared with a reflective MEMS pulse shaper. Optics Express, 2011, 19, 7580.	3.4	20
24	Shaping light with MOEMS. , 2011, , .		2
25	Discriminating Biomolecules with Coherent Control Strategies. Chimia, 2011, 65, 346.	0.6	7
26	Design, simulation, fabrication, packaging, and characterization of a MEMS-based mirror array for femtosecond pulse-shaping in phase and amplitude. Review of Scientific Instruments, 2011, 82, 075106.	1.3	10
27	High aspect ratio micromirror array with two degrees of freedom for femtosecond pulse shaping. Proceedings of SPIE, 2010, , .	0.8	5
28	Evanescent-Field-Induced Second Harmonic Generation by Noncentrosymmetric Nanoparticles. Optics Express, 2010, 18, 23218.	3.4	32
29	Ultraviolet and near-infrared femtosecond temporal pulse shaping with a new high-aspect-ratio one-dimensional micromirror array. Optics Letters, 2010, 35, 3102.	3.3	19
30	Linear MEMS micromirror array for UV-NIR femtosecond pulse shaping. , 2010, , .		0
31	Linear micromirror array for broadband femtosecond pulse shaping in phase and amplitude. Proceedings of SPIE, 2009, , .	0.8	1
32	MEMS for femtosecond pulse shaping applications. , 2009, , .		1
33	Characterization of a MEMS-based pulse-shaping device inÂtheÂdeep ultraviolet. Applied Physics B: Lasers and Optics, 2009, 96, 757-761.	2.2	27
34	An inexpensive nonlinear medium for intense ultrabroadband pulse characterization. Applied Physics B: Lasers and Optics, 2009, 97, 537-540.	2.2	9
35	Nanodoublers as deep imaging markers for multi-photon microscopy. Optics Express, 2009, 17, 15342.	3.4	71
36	Large linear micromirror array for UV femtosecond laser pulse shaping. , 2008, , .		2

JEROME EXTERMANN

#	Article	IF	CITATIONS
37	Nano-FROG: Frequency resolved optical gating by a nanometric object. Optics Express, 2008, 16, 10405.	3.4	45
38	Identification of biological microparticles using ultrafast depletion spectroscopy. Faraday Discussions, 2008, 137, 37-49.	3.2	18
39	Effects of atmospheric turbulence on remote optimal control experiments. Applied Physics Letters, 2008, 92, 041103.	3.3	7
40	On the sensitivity of a hollow sphere as a multi-modal resonant gravitational wave detector. Classical and Quantum Gravity, 2007, 24, 2231-2251.	4.0	1
41	Multiobjective genetic approach for optimal control of photoinduced processes. Physical Review A, 2007, 76, .	2.5	32
42	32TW atmospheric white-light laser. Applied Physics Letters, 2007, 90, 151106.	3.3	34
43	TW lasers in air: ultra-high powers and optimal control strategies. Proceedings of SPIE, 2007, , .	0.8	0
44	Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy. Applied Physics B: Lasers and Optics, 2007, 87, 399-403.	2.2	98
45	A Multi-Objective Genetic Approach for Optimal Control of Photo-Induced Processes. , 2007, , .		1