Yong-Guang Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/519917/publications.pdf

Version: 2024-02-01

137 papers

9,130 citations

57758 44 h-index 91 g-index

140 all docs 140 docs citations

times ranked

140

10185 citing authors

#	Article	IF	CITATIONS
1	Engineering optimal vaccination strategies: effects of physical properties of the delivery system on functions. Biomaterials Science, 2022, 10, 1408-1422.	5.4	6
2	Different tumorigenicity and distinct metastasis and gene signature between orthotopic and subcutaneous neuroblastoma xenografted mice. Aging, 2022, 14, 1932-1940.	3.1	1
3	Current status of clinical trials assessing mesenchymal stem cell therapy for graft versus host disease: a systematic review. Stem Cell Research and Therapy, 2022, 13, 93.	5.5	25
4	Research Progress on Gene Editing Based on Nano-Drug Delivery Vectors for Tumor Therapy. Frontiers in Bioengineering and Biotechnology, 2022, 10, 873369.	4.1	4
5	Generation of immunodeficient pig with hereditary tyrosinemia type 1 and their preliminary application for humanized liver. Cell and Bioscience, 2022, 12, 26.	4.8	6
6	Nanoparticle-Based Drug Delivery Systems for Induction of Tolerance and Treatment of Autoimmune Diseases. Frontiers in Bioengineering and Biotechnology, 2022, 10, 889291.	4.1	14
7	A biocompatible nanoparticle-based approach to inhibiting renal ischemia reperfusion injury in mice by blocking thrombospondin-1 activity. American Journal of Transplantation, 2022, 22, 2246-2253.	4.7	2
8	Exploration of Human Lung-Resident Immunity and Response to Respiratory Viral Immunization in a Humanized Mouse Model. Journal of Immunology, 2022, 208, 420-428.	0.8	5
9	SLAMF3 and SLAMF4 are immune checkpoints that constrain macrophage phagocytosis of hematopoietic tumors Science Immunology, 2022, 7, eabj5501.	11.9	9
10	Incompatibility between recipient CD47 and donor SIRPÎ \pm is not a key risk factor for thrombocytopenia or anemia following rat liver xenotransplantation in mice. Xenotransplantation, 2021, 28, e12657.	2.8	2
11	Role of the thymus in spontaneous development of a multi-organ autoimmune disease in human immune system mice. Journal of Autoimmunity, 2021, 119, 102612.	6.5	4
12	Role of CXCR4 in the progression and therapy of acute leukaemia. Cell Proliferation, 2021, 54, e13076.	5.3	20
13	The Hostâ€Defenseâ€Peptideâ€Mimicking Synthetic Polypeptides Effectively Enhance Antitumor Immunity through Promoting Immunogenic Tumor Cell Death. Macromolecular Bioscience, 2021, 21, e2100171.	4.1	6
14	Posttransplant blockade of CXCR4 improves leukemia complete remission rates and donor stem cell engraftment without aggravating GVHD. Cellular and Molecular Immunology, 2021, 18, 2541-2553.	10.5	4
15	Rejection of xenogeneic porcine islets in humanized mice is characterized by graftâ€infiltrating Th17 cells and activated B cells. American Journal of Transplantation, 2020, 20, 1538-1550.	4.7	8
16	Human Thymic Involution and Aging in Humanized Mice. Frontiers in Immunology, 2020, 11, 1399.	4.8	12
17	Agingâ€associated changes in CD47 arrangement and interaction with thrombospondinâ€1 on red blood cells visualized by superâ€resolution imaging. Aging Cell, 2020, 19, e13224.	6.7	27
18	<i>IL2RG</i> â€deficient minipigs generated via CRISPR/Cas9 technology support the growth of human melanomaâ€derived tumours. Cell Proliferation, 2020, 53, e12863.	5.3	20

#	Article	IF	CITATIONS
19	Humanized Rodent Models for Cancer Research. Frontiers in Oncology, 2020, 10, 1696.	2.8	68
20	Human Immune System Mice With Autologous Tumor for Modeling Cancer Immunotherapies. Frontiers in Immunology, 2020, 11, 591669.	4.8	6
21	Cationic Liposome/DNA Complexes Mediate Antitumor Immunotherapy by Promoting Immunogenic Tumor Cell Death and Dendritic Cell Activation. ACS Applied Materials & Enterfaces, 2020, 12, 28047-28056.	8.0	30
22	CD47 Deficiency in Mice Exacerbates Chronic Fatty Diet-Induced Steatohepatitis Through Its Role in Regulating Hepatic Inflammation and Lipid Metabolism. Frontiers in Immunology, 2020, 11, 148.	4.8	13
23	Vaccination with CD47 deficient tumor cells elicits an antitumor immune response in mice. Nature Communications, 2020, 11, 581.	12.8	38
24	Intratumoral delivery of CCL25 enhances immunotherapy against triple-negative breast cancer by recruiting CCR9 ⁺ T cells. Science Advances, 2020, 6, eaax4690.	10.3	51
25	Photodynamic therapy produces enhanced efficacy of antitumor immunotherapy by simultaneously inducing intratumoral release of sorafenib. Biomaterials, 2020, 240, 119845.	11.4	62
26	Elimination of donor CD47 protects against vascularized allograft rejection in mice. Xenotransplantation, 2019, 26, e12459.	2.8	19
27	Long-term survival and differentiation of human thymocytes in human thymus-grafted immunodeficient mice. Immunotherapy, 2019, 11, 881-888.	2.0	10
28	Upregulation of SLAMF3 on human T cells is induced by palmitic acid through the STAT5-PI3K/Akt pathway and features the chronic inflammatory profiles of type 2 diabetes. Cell Death and Disease, 2019, 10, 559.	6.3	22
29	Red blood cell-derived nanovesicles for safe and efficient macrophage-targeted drug delivery <i>in vivo</i> . Biomaterials Science, 2019, 7, 187-195.	5.4	21
30	Intratumoral delivery of M-CSF by calcium crosslinked polymer micelles enhances cancer immunotherapy. Biomaterials Science, 2019, 7, 2769-2776.	5.4	26
31	Posttransplant Hemophagocytic Lymphohistiocytosis Driven by Myeloid Cytokines and Vicious Cycles of T-Cell and Macrophage Activation in Humanized Mice. Frontiers in Immunology, 2019, 10, 186.	4.8	50
32	Humanized Mice Reveal New Insights Into the Thymic Selection of Human Autoreactive CD8+ T Cells. Frontiers in Immunology, 2019, 10 , 63 .	4.8	14
33	Modeling anti-CD19 CAR T cell therapy in humanized mice with human immunity and autologous leukemia. EBioMedicine, 2019, 39, 173-181.	6.1	47
34	CXCR4 blockade improves leukemia eradication by allogeneic lymphocyte infusion. American Journal of Hematology, 2018, 93, 786-793.	4.1	9
35	Transcription factor Hoxb5 reprograms B cells into functional T lymphocytes. Nature Immunology, 2018, 19, 279-290.	14.5	38
36	Inhibition of intrinsic coagulation improves safety and tumor-targeted drug delivery of cationic solid lipid nanoparticles. Biomaterials, 2018, 156, 77-87.	11.4	32

#	Article	IF	CITATIONS
37	Macrophage Inflammation, Erythrophagocytosis, and Accelerated Atherosclerosis in <i>Jak2</i> ^{<i>V617F</i>} Mice. Circulation Research, 2018, 123, e35-e47.	4.5	173
38	IMiD compounds affect CD34+ cell fate and maturation via CRBN-induced IKZF1 degradation. Blood Advances, 2018, 2, 492-504.	5.2	15
39	Inhibition of pregnancy-associated granulocytic myeloid-derived suppressor cell expansion and arginase-1 production in preeclampsia. Journal of Reproductive Immunology, 2018, 127, 48-54.	1.9	32
40	Humanized mice reveal an essential role for human hepatocytes in the development of the liver immune system. Cell Death and Disease, 2018, 9, 667.	6.3	22
41	Hypercholesterolemia induces T cell expansion in humanized immune mice. Journal of Clinical Investigation, 2018, 128, 2370-2375.	8.2	40
42	Antithymocyte globulin treatment at the time of transplantation impairs donor hematopoietic stem cell engraftment. Cellular and Molecular Immunology, 2017, 14, 443-450.	10.5	6
43	Prolonged Survival of Pig Skin on Baboons After Administration of Pig Cells Expressing Human CD47. Transplantation, 2017, 101, 316-321.	1.0	82
44	CD47 deficiency improves neurological outcomes of traumatic brain injury in mice. Neuroscience Letters, 2017, 643, 125-130.	2.1	18
45	Complement Depletion Improves Human Red Blood Cell Reconstitution in Immunodeficient Mice. Stem Cell Reports, 2017, 9, 1034-1042.	4.8	20
46	Type 1 diabetes induction in humanized mice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10954-10959.	7.1	67
47	Thrombospondin-1 Gene Deficiency Worsens the Neurological Outcomes of Traumatic Brain Injury in Mice. International Journal of Medical Sciences, 2017, 14, 927-936.	2.5	22
48	CD47 deficiency in tumor stroma promotes tumor progression by enhancing angiogenesis. Oncotarget, 2017, 8, 22406-22413.	1.8	34
49	Modeling Human Leukemia Immunotherapy in Humanized Mice. EBioMedicine, 2016, 10, 101-108.	6.1	19
50	Thrombospondin-1 signaling through CD47 inhibits cell cycle progression and induces senescence in endothelial cells. Cell Death and Disease, 2016, 7, e2368-e2368.	6.3	79
51	Arginase-1–dependent promotion of T _H 17 differentiation and disease progression by MDSCs in systemic lupus erythematosus. Science Translational Medicine, 2016, 8, 331ra40.	12.4	147
52	Donor CD47 controls T cell alloresponses and is required for tolerance induction following hepatocyte allotransplantation. Scientific Reports, 2016, 6, 26839.	3.3	22
53	Human melanoma immunotherapy using tumor antigen-specific T cells generated in humanized mice. Oncotarget, 2016, 7, 6448-6459.	1.8	38
54	Humanized Mice Reveal Differential Immunogenicity of Cells Derived from Autologous Induced Pluripotent Stem Cells. Cell Stem Cell, 2015, 17, 353-359.	11,1	198

#	Article	IF	CITATIONS
55	Single-molecule-force spectroscopy study of the mechanism of interactions between TSP-1 and CD47. Science China Chemistry, 2014, 57, 1716-1722.	8.2	2
56	Non-mitogenic form of acidic fibroblast growth factor protects against graft-versus-host disease without accelerating leukemia. International Immunopharmacology, 2014, 23, 395-399.	3.8	0
57	The complex and central role of interferonâ€Î³ in graftâ€versusâ€host disease and graftâ€versusâ€tumor activity. Immunological Reviews, 2014, 258, 30-44.	6.0	50
58	An Effective Approach to Prevent Immune Rejection of Human ESC-Derived Allografts. Cell Stem Cell, 2014, 14, 121-130.	11.1	218
59	Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nature Biotechnology, 2014, 32, 84-91.	17.5	497
60	Studying the mechanism of CD47–SIRPα interactions on red blood cells by single molecule force spectroscopy. Nanoscale, 2014, 6, 9951-9954.	5.6	16
61	Rapid Dendritic Cell Activation and Resistance to Allotolerance Induction in Anti-CD154-Treated Mice Receiving CD47-Deficient Donor-Specific Transfusion. Cell Transplantation, 2014, 23, 355-363.	2.5	13
62	Antioxidant N-acetyl-l-cysteine increases engraftment of human hematopoietic stem cells in immune-deficient mice. Blood, 2014, 124, e45-e48.	1.4	74
63	Lack of CD47 on Donor Hepatocytes Promotes Innate Immune Cell Activation and Graft Loss: A Potential Barrier to Hepatocyte Xenotransplantation. Cell Transplantation, 2014, 23, 345-354.	2.5	28
64	Activated CD8 T cells acquire NK1.1 expression and preferentially locate in the liver in mice after allogeneic hematopoietic cell transplantation. Immunology Letters, 2013, 150, 75-78.	2.5	7
65	Innate cellular immunity and xenotransplantation. Current Opinion in Organ Transplantation, 2012, 17, 162-167.	1.6	34
66	Human lymphohematopoietic reconstitution and immune function in immunodeficient mice receiving cotransplantation of human thymic tissue and CD34+ cells. Cellular and Molecular Immunology, 2012, 9, 232-236.	10.5	23
67	A Model for Personalized in Vivo Analysis of Human Immune Responsiveness. Science Translational Medicine, 2012, 4, 125ra30.	12.4	108
68	Full reconstitution of human platelets in humanized mice after macrophage depletion. Blood, 2012, 120, 1713-1716.	1.4	65
69	Donor Bone Marrow-Derived T Cells Inhibit GVHD Induced by Donor Lymphocyte Infusion in Established Mixed Allogeneic Hematopoietic Chimeras. PLoS ONE, 2012, 7, e47120.	2.5	3
70	Bcl-xL enhances single-cell survival and expansion of human embryonic stem cells without affecting self-renewal. Stem Cell Research, 2012, 8, 26-37.	0.7	43
71	Human Natural Regulatory T Cell Development, Suppressive Function, and Postthymic Maturation in a Humanized Mouse Model. Journal of Immunology, 2011, 187, 3895-3903.	0.8	55
72	CD47: a new player in phagocytosis and xenograft rejection. Cellular and Molecular Immunology, 2011, 8, 285-288.	10.5	47

#	Article	IF	Citations
73	IFN- \hat{I}^3 promotes graft-versus-leukemia effects without directly interacting with leukemia cells in mice after allogeneic hematopoietic cell transplantation. Blood, 2011, 118, 3721-3724.	1.4	10
74	Macrophages prevent human red blood cell reconstitution in immunodeficient mice. Blood, 2011, 118, 5938-5946.	1.4	133
75	Human CD47 Expression Permits Survival of Porcine Cells in Immunodeficient Mice that Express SIRPα Capable of Binding to Human CD47. Cell Transplantation, 2011, 20, 1915-1920.	2.5	23
76	Cell Delivery: From Cell Transplantation to Organ Engineering. Cell Transplantation, 2010, 19, 655-665.	2.5	58
77	Survival and function of CD47â€deficient thymic grafts in mice. Xenotransplantation, 2010, 17, 160-165.	2.8	12
78	Review Article: CD47 in xenograft rejection and tolerance induction. Xenotransplantation, 2010, 17, 267-273.	2.8	31
79	Homeostatic Expansion and Phenotypic Conversion of Human T Cells Depend on Peripheral Interactions with APCs. Journal of Immunology, 2010, 184, 6756-6765.	0.8	48
80	CD47 Is Required for Suppression of Allograft Rejection by Donor-Specific Transfusion. Journal of Immunology, 2010, 184, 3401-3407.	0.8	38
81	RNAi-mediated CCR5 Silencing by LFA-1-targeted Nanoparticles Prevents HIV Infection in BLT Mice. Molecular Therapy, 2010, 18, 370-376.	8.2	192
82	Induction of Robust Cellular and Humoral Virus-Specific Adaptive Immune Responses in Human Immunodeficiency Virus-Infected Humanized BLT Mice. Journal of Virology, 2009, 83, 7305-7321.	3.4	247
83	Neurovascular effects of CD47 signaling: Promotion of cell death, inflammation, and suppression of angiogenesis in brain endothelial cells in vitro. Journal of Neuroscience Research, 2009, 87, 2571-2577.	2.9	35
84	Role of oxidative stress and caspase 3 in CD47â€mediated neuronal cell death. Journal of Neurochemistry, 2009, 108, 430-436.	3.9	32
85	CD47 gene knockout protects against transient focal cerebral ischemia in mice. Experimental Neurology, 2009, 217, 165-170.	4.1	52
86	Paradoxical effects of IFN- \hat{I}^3 in graft-versus-host disease reflect promotion of lymphohematopoietic graft-versus-host reactions and inhibition of epithelial tissue injury. Blood, 2009, 113, 3612-3619.	1.4	50
87	Pig islet xenograft rejection in a mouse model with an established human immune system. Xenotransplantation, 2008, 15, 129-135.	2.8	61
88	T Cell-Specific siRNA Delivery Suppresses HIV-1 Infection in Humanized Mice. Cell, 2008, 134, 577-586.	28.9	542
89	Antigen-specific human T-cell responses and T cell–dependent production of human antibodies in a humanized mouse model. Blood, 2008, 111, 4293-4296.	1.4	120
90	Comparison of Human T Cell Repertoire Generated in Xenogeneic Porcine and Human Thymus Grafts. Transplantation, 2008, 86, 601-610.	1.0	22

#	Article	IF	Citations
91	Role for CD47-SIRPÂ signaling in xenograft rejection by macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5062-5066.	7.1	270
92	Lack of CD47 on nonhematopoietic cells induces split macrophage tolerance to CD47 ^{null} cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13744-13749.	7.1	87
93	Attenuation of phagocytosis of xenogeneic cells by manipulating CD47. Blood, 2007, 109, 836-842.	1.4	111
94	Establishment of transplantable porcine tumor cell lines derived from MHC- inbred miniature swine. Blood, 2007, 110, 3996-4004.	1.4	24
95	Tolerance in xenotransplantation. Current Opinion in Organ Transplantation, 2007, 12, 169-175.	1.6	1
96	An Essential Role for IFN- \hat{l}^3 in Regulation of Alloreactive CD8 T Cells Following Allogeneic Hematopoietic Cell Transplantation. Biology of Blood and Marrow Transplantation, 2007, 13, 46-55.	2.0	40
97	Xenotransplantation: current status and a perspective on the future. Nature Reviews Immunology, 2007, 7, 519-531.	22.7	284
98	Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood, 2006, 108, 487-492.	1.4	410
99	Characterization of Anti-Gal Antibody-Producing Cells of Baboons and Humans. Transplantation, 2006, 81, 940-948.	1.0	14
100	Role of VLA-4 and VLA-5 in ex vivo maintenance of human and pig hematopoiesis in human stroma-supported long-term cultures. Experimental Hematology, 2005, 33, 363-370.	0.4	10
101	No Evidence for Significant Transdifferentiation of Bone Marrow Into Pancreatic Â-Cells In Vivo. Diabetes, 2004, 53, 616-623.	0.6	254
102	Application of xenogeneic stem cells for induction of transplantation tolerance: present state and future directions. Seminars in Immunopathology, 2004, 26, 187-200.	4.0	17
103	T Cells from Presensitized Donors Fail to Cause Graft-versus-Host Disease in a Pig-to-Mouse Xenotransplantation Model. Transplantation, 2004, 78, 1609-1617.	1.0	5
104	Induction of human T-cell tolerance to porcine xenoantigens through mixed hematopoietic chimerism. Blood, 2004, 103, 3964-3969.	1.4	89
105	Mouse retrovirus mediates porcine endogenous retrovirus transmission into human cells in long-term human-porcine chimeric mice. Journal of Clinical Investigation, 2004, 114, 695-700.	8.2	33
106	Stem cell activity of porcine c-kit+ hematopoietic cells. Experimental Hematology, 2003, 31, 833-840.	0.4	15
107	Peritoneal Cavity B Cells Are Precursors of Splenic IgM Natural Antibody-Producing Cells. Journal of Immunology, 2003, 171, 5406-5414.	0.8	136
108	Elimination of Porcine Hemopoietic Cells by Macrophages in Mice. Journal of Immunology, 2002, 168, 621-628.	0.8	55

#	Article	IF	Citations
109	Mixed chimerism induces donor-specific T-cell tolerance across a highly disparate xenogeneic barrier. Blood, 2002, 99, 3823-3829.	1.4	50
110	Donor-derived interferon \hat{I}^3 separates graft-versus-leukemia effects and graft-versus-host disease induced by donor CD8 T cells. Blood, 2002, 99, 4207-4215.	1.4	84
111	Lineage-Negative Side-Population (SP) Cells with Restricted Hematopoietic Capacity Circulate in Normal Human Adult Blood: Immunophenotypic and Functional Characterization. Stem Cells, 2002, 20, 417-427.	3.2	53
112	Tolerization of $Gall\pm1,3Gal$ -reactive B cells in pre-sensitized $l\pm1,3$ -galactosyltransferase-deficient mice by nonmyeloablative induction of mixed chimerism. Xenotransplantation, 2001, 8, 227-238.	2.8	50
113	T CELL AND B CELL TOLERANCE TO GAL??1,3GAL-EXPRESSING HEART XENOGRAFTS IS ACHIEVED IN ??1,3-GALACTOSYLTRANSFERASE-DEFICIENT MICE BY NONMYELOABLATIVE INDUCTION OF MIXED CHIMERISM1. Transplantation, 2001, 71, 1532-1542.	1.0	65
114	Development and analysis of transgenic mice expressing porcine hematopoietic cytokines: a model for achieving durable porcine hematopoietic chimerism across an extensive xenogeneic barrier. Xenotransplantation, 2000, 7, 58-64.	2.8	22
115	Mac-1-Negative B-1b Phenotype of Natural Antibody-Producing Cells, Including Those Responding to Gal $\hat{l}\pm1,3$ Gal Epitopes in $\hat{l}\pm1,3$ -Galactosyltransferase-Deficient Mice. Journal of Immunology, 2000, 165, 5518-5529.	0.8	116
116	The role of interleukin-12 and interferon- \hat{l}^3 in GVHD and GVL. Cytokines, Cellular & Molecular Therapy, 2000, 6, 41-46.	0.3	13
117	Hematopoietic Stem Cell Quiescence Maintained by p21 ^{cip1/waf1} . Science, 2000, 287, 1804-1808.	12.6	1,199
118	ROLE OF ANTIBODY-INDEPENDENT COMPLEMENT ACTIVATION IN REJECTION OF PORCINE BONE MARROW CELLS IN MICE 1. Transplantation, 2000, 69, 163.	1.0	15
119	IN VIVO T-CELL DEPLETION ENHANCES PRODUCTION OF ANTI-GAL??1,3GAL NATURAL ANTIBODIES IN ??1,3-GALACTOSYLTRANSFERASE-DEFICIENT MICE1. Transplantation, 2000, 69, 910-913.	1.0	29
120	PORCINE STEM CELL ENGRAFTMENT AND SEEDING OF MURINE THYMUS WITH CLASS II+ CELLS IN MICE EXPRESSING PORCINE CYTOKINES. Transplantation, 2000, 69, 2484-2490.	1.0	44
121	Lymphohematopoietic graft-vshost reactions can be induced without graft-vshost disease in murine mixed chimeras established with a cyclophosphamide-based nonmyeloablative conditioning regimen. Biology of Blood and Marrow Transplantation, 1999, 5, 133-143.	2.0	161
122	The Role of Interleukin-12 in Preserving the Graft-Versus-Leukemia Effect of Allogeneic CD8 T Cells Independently of GVHD. Leukemia and Lymphoma, 1999, 33, 409-420.	1.3	25
123	THE FATE OF DONOR T-CELL RECEPTOR TRANSGENIC T CELLS WITH KNOWN HOST ANTIGEN SPECIFICITY IN A GRAFT-VERSUS-HOST DISEASE MODEL1. Transplantation, 1999, 68, 141-149.	1.0	32
124	Mixed chimerism induced without lethal conditioning prevents T cell– and anti-Galα1,3Gal–mediated graft rejection. Journal of Clinical Investigation, 1999, 104, 281-290.	8.2	123
125	Tolerization of Anti–Galα1-3Gal Natural Antibody–forming B Cells by Induction of Mixed Chimerism. Journal of Experimental Medicine, 1998, 187, 1335-1342.	8.5	189
126	B-CELL RECONSTITUTION AND XENOREACTIVE ANTI-PIG NATURAL ANTIBODY PRODUCTION IN SEVERE COMBINED IMMUNODEFICIENT MICE RECONSTITUTED WITH IMMUNOCOMPETENT B CELLS FROM VARYING SOURCES1. Transplantation, 1998, 66, 89-95.	1.0	23

#	Article	IF	CITATIONS
127	Interleukin-12 Inhibits Graft-Versus-Host Disease Through an Fas-Mediated Mechanism Associated With Alterations in Donor T-Cell Activation and Expansion. Blood, 1998, 91, 3315-3322.	1.4	4
128	Engraftment of discordant xenogeneic swine bone marrow cells in immunodeficient mice. Xenotransplantation, 1997, 4, 235-244.	2.8	10
129	Interleukin-12 Preserves the Graft-Versus-Leukemia Effect of Allogeneic CD8 T Cells While Inhibiting CD4-Dependent Graft-Versus-Host Disease in Mice. Blood, 1997, 90, 4651-4660.	1.4	97
130	INTERLEUKIN-12 PREVENTS SEVERE ACUTE GRAFT-VERSUS-HOST DISEASE (GVHD) AND GVHD-ASSOCIATED IMMUNE DYSFUNCTION IN A FULLY MAJOR HISTOCOMPATIBILITY COMPLEX HAPLOTYPE-MISMATCHED MURINE BONE MARROW TRANSPLANTATION MODEL1. Transplantation, 1997, 64, 1343-1352.	1.0	26
131	Donorâ€specific growth factors promote swine hematopoiesis in severe combined immune deficient mice. Xenotransplantation, 1996, 3, 92-101.	2.8	39
132	HLAâ€DR gene frequencies in the Japanese population obtained by oligonucleotide genotyping. Tissue Antigens, 1991, 38, 124-132.	1.0	22
133	Sequence analysis and HLA-DR genotyping of a novel HLA-DRw14 allele. Immunogenetics, 1990, 32, 313-20.	2.4	22
134	Graft-versus-Host Disease and Graft-versus-Leukemic Effect in Allogeneic Bone Marrow Transplantation. Graft: Organ and Cell Transplantation, 0, 5, 250-255.	0.0	2
135	Upregulation of SLAMF3 on Human T cells Is Induced by Palmitic Acid Through the STAT5-PI3K/Akt Pathway and Features the Chronic Inflammatory Profiles of Type 2 Diabetes. SSRN Electronic Journal, 0, , .	0.4	0
136	Kidney Functional Stages Influence the Role of PEG End-group on the Renal Accumulation and Distribution of PEGylated Nanoparticles. Nanoscale, 0, , .	5.6	2
137	Improvement of human myeloid and natural killer cell development in humanized mice via hydrodynamic injection of transposon plasmids containing multiple human cytokine genes. Immunology and Cell Biology, 0, , .	2.3	0