Hongliang Zong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5198575/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pharmacologic Inhibition of the Menin-MLL Interaction Blocks Progression of MLL Leukemia InÂVivo. Cancer Cell, 2015, 27, 589-602.	16.8	290
2	Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90. Nature Chemical Biology, 2011, 7, 818-826.	8.0	240
3	The epichaperome is an integrated chaperome network that facilitates tumour survival. Nature, 2016, 538, 397-401.	27.8	233
4	FDA-approved ferumoxytol displays anti-leukaemia efficacy against cells with low ferroportin levels. Nature Nanotechnology, 2019, 14, 616-622.	31.5	199
5	AGEs, RAGE, and Diabetic Retinopathy. Current Diabetes Reports, 2011, 11, 244-252.	4.2	190
6	Homodimerization Is Essential for the Receptor for Advanced Glycation End Products (RAGE)-mediated Signal Transduction. Journal of Biological Chemistry, 2010, 285, 23137-23146.	3.4	115
7	A small-molecule inhibitor of the aberrant transcription factor CBFÎ ² -SMMHC delays leukemia in mice. Science, 2015, 347, 779-784.	12.6	104
8	Elevated β1,4-Galactosyltransferase I in Highly Metastatic Human Lung Cancer Cells. Journal of Biological Chemistry, 2005, 280, 12503-12516.	3.4	88
9	Small Molecule Inhibitor of CBFÎ ² -RUNX Binding for RUNX Transcription Factor Driven Cancers. EBioMedicine, 2016, 8, 117-131.	6.1	84
10	Cyclin D3/CDK11 ^{p58} Complex Is Involved in the Repression of Androgen Receptor. Molecular and Cellular Biology, 2007, 27, 7125-7142.	2.3	71
11	A Hyperactive Signalosome in Acute Myeloid Leukemia Drives Addiction to a Tumor-Specific Hsp90 Species. Cell Reports, 2015, 13, 2159-2173.	6.4	51
12	The C-terminal Kinase Domain of the p34cdc2-related PITSLRE Protein Kinase (p110C) Associates with p21-activated Kinase 1 and Inhibits Its Activity during Anoikis. Journal of Biological Chemistry, 2003, 278, 20029-20036.	3.4	43
13	Design, synthesis, and evaluation of small molecule Hsp90 probes. Bioorganic and Medicinal Chemistry, 2011, 19, 2603-2614.	3.0	43
14	The β-(1→6)-branched β-(1→3) glucohexaose and its analogues containing an α-(1→3)-linked bond have simila stimulatory effects on the mouse spleen as Lentinan. International Immunopharmacology, 2003, 3, 1861-1871.	ır 3.8	33
15	Overexpression of small glutamine-rich TPR-containing protein promotes apoptosis in 7721 cells. FEBS Letters, 2005, 579, 1279-1284.	2.8	32
16	β1,4-Galactosyltransferase V Functions as a Positive Growth Regulator in Glioma. Journal of Biological Chemistry, 2006, 281, 9482-9489.	3.4	31
17	Synthesis and evaluation of a series of resveratrol analogues as potent anti-cancer agents that target tubulin. MedChemComm, 2015, 6, 788-794.	3.4	31
18	SGT, a Hsp90β binding partner, is accumulated in the nucleus during cell apoptosis. Biochemical and Biophysical Research Communications, 2006, 343, 1153-1158.	2.1	30

HONGLIANG ZONG

#	Article	IF	CITATIONS
19	Downregulation of \hat{l}^2 1,4-galactosyltransferase 1 inhibits CDK11p58-mediated apoptosis induced by cycloheximide. Biochemical and Biophysical Research Communications, 2005, 327, 628-636.	2.1	29
20	Knockdown of BCL2L12 leads to cisplatin resistance in MDA-MB-231 breast cancer cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2008, 1782, 649-657.	3.8	28
21	Functional Interaction of E1AF and Sp1 in Glioma Invasion. Molecular and Cellular Biology, 2007, 27, 8770-8782.	2.3	24
22	Cdc34-mediated Degradation of ATF5 Is Blocked by Cisplatin. Journal of Biological Chemistry, 2008, 283, 18773-18781.	3.4	24
23	Identification of the p28 subunit of eukaryotic initiation factor 3(eIF3k) as a new interaction partner of cyclin D3. FEBS Letters, 2004, 573, 139-146.	2.8	23
24	HSP70 protects BCL2L12 and BCL2L12A from Nâ€ŧerminal ubiquitinationâ€mediated proteasomal degradation. FEBS Letters, 2009, 583, 1409-1414.	2.8	22
25	CDK11p58 represses vitamin D receptor-mediated transcriptional activation through promoting its ubiquitin–proteasome degradation. Biochemical and Biophysical Research Communications, 2009, 386, 493-498.	2.1	22
26	Cyclin-dependent kinase 11p58interacts with HBO1 and enhances its histone acetyltransferase activity. FEBS Letters, 2005, 579, 3579-3588.	2.8	21
27	Down-regulation of β1,4-galactosyltransferase V is a critical part of etoposide-induced apoptotic process and could be mediated by decreasing Sp1 levels in human glioma cells. Glycobiology, 2006, 16, 1045-1051.	2.5	20
28	Synthesis of purine-scaffold fluorescent probes for heat shock protein 90 with use in flow cytometry and fluorescence microscopy. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5347-5352.	2.2	20
29	Repression of Estrogen Receptor alpha by CDK11p58 Through Promoting its Ubiquitin-Proteasome Degradation. Journal of Biochemistry, 2009, 145, 331-343.	1.7	18
30	Synthesis, anticancer activity and molecular docking studies on a series of heterocyclic trans-cyanocombretastatin analogues as antitubulin agents. European Journal of Medicinal Chemistry, 2015, 92, 212-220.	5.5	18
31	Thr-370 Is Responsible for CDK11p58 Autophosphorylation, Dimerization, and Kinase Activity. Journal of Biological Chemistry, 2011, 286, 1748-1757.	3.4	17
32	CDK11p58 protein kinase activity is associated with Bcl-2 down-regulation in pro-apoptosis pathway. Molecular and Cellular Biochemistry, 2007, 304, 213-218.	3.1	13
33	Ubiquitin-dependent proteolysis of trihydrophobin 1 (TH1) by the human papilloma virus E6-associated protein (E6-AP). Journal of Cellular Biochemistry, 2007, 101, 167-180.	2.6	10
34	Cell Surface Beta 1, 4-galactosyltransferase 1 promotes apoptosis by inhibiting epidermal growth factor receptor pathway. Molecular and Cellular Biochemistry, 2006, 291, 69-76.	3.1	9
35	Novel Multistage Nanoparticle Drug Delivery to Ablate Leukemia Stem Cells in Their Niche Blood, 2012, 120, 2631-2631.	1.4	7
36	Protein expression pattern of CDK11p58 during testicular development in the mouse. Molecular and Cellular Biochemistry, 2005, 270, 99-106.	3.1	5

HONGLIANG ZONG

#	Article	IF	CITATIONS
37	Trihydrophobin 1 attenuates androgen signal transduction through promoting androgen receptor degradation. Journal of Cellular Biochemistry, 2010, 109, 1013-1024.	2.6	3
38	Cranberry A-type proanthocyanidins selectively target acute myeloid leukemia cells. Blood Advances, 2019, 3, 3261-3265.	5.2	3
39	The Acrylonitrile Analog, VJ-289 Ablates Acute Myelogenous Leukemia Blast, Progenitor and Stem Cell Populations by Inducing Tubulin Acetylation and Caspase Activation. Blood, 2011, 118, 2496-2496.	1.4	0
40	FLT3-ITD+ AML Blast, Progenitor and Stem Cell Populations Demonstrate Higher Sensitivity to the Hsp90 Inhibitor PU-H71,. Blood, 2011, 118, 3500-3500.	1.4	0
41	HSP70 Inhibitor, YK5, Ablates Blast, Progenitor and Stem Cell Populations in Primary Acute Myelogenous Leukemia Cells. Blood, 2011, 118, 2493-2493.	1.4	0
42	A-Type Proanthocyanidins Prevent Engraftment Of Primary Acute Myelogenous Leukemia Cells In Mice and Exhibit Potentially Novel Anti-Leukemia Mechanisms. Blood, 2013, 122, 3962-3962.	1.4	0
43	A Hyperactive Signalosome Results in High Sensitivity to HSP90 Inhibitors in AML. Blood, 2015, 126, 2567-2567.	1.4	0