Alexey A Gurevich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5198457/publications.pdf

Version: 2024-02-01

27 papers 33,008 citations

279798 23 h-index 27 g-index

34 all docs 34 docs citations

34 times ranked

35254 citing authors

#	Article	IF	CITATIONS
1	SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. Journal of Computational Biology, 2012, 19, 455-477.	1.6	20,193
2	QUAST: quality assessment tool for genome assemblies. Bioinformatics, 2013, 29, 1072-1075.	4.1	6,983
3	Assembling Single-Cell Genomes and Mini-Metagenomes From Chimeric MDA Products. Journal of Computational Biology, 2013, 20, 714-737.	1.6	1,235
4	Versatile genome assembly evaluation with QUAST-LG. Bioinformatics, 2018, 34, i142-i150.	4.1	732
5	Feature-based molecular networking in the GNPS analysis environment. Nature Methods, 2020, 17, 905-908.	19.0	650
6	Critical Assessment of Metagenome Interpretation—a benchmark of metagenomics software. Nature Methods, 2017, 14, 1063-1071.	19.0	635
7	MetaQUAST: evaluation of metagenome assemblies. Bioinformatics, 2016, 32, 1088-1090.	4.1	447
8	Assembling Genomes and Mini-metagenomes from Highly Chimeric Reads. Lecture Notes in Computer Science, 2013, , 158-170.	1.3	439
9	metaFlye: scalable long-read metagenome assembly using repeat graphs. Nature Methods, 2020, 17, 1103-1110.	19.0	430
10	Dereplication of microbial metabolites through database search of mass spectra. Nature Communications, 2018, 9, 4035.	12.8	220
11	Dereplication of peptidic natural products through database search of mass spectra. Nature Chemical Biology, 2017, 13, 30-37.	8.0	184
12	Critical Assessment of Metagenome Interpretation: the second round of challenges. Nature Methods, 2022, 19, 429-440.	19.0	133
13	Icarus: visualizer for <i>de novo</i> assembly evaluation. Bioinformatics, 2016, 32, 3321-3323.	4.1	115
14	ExSPAnder: a universal repeat resolver for DNA fragment assembly. Bioinformatics, 2014, 30, i293-i301.	4.1	103
15	Increased diversity of peptidic natural products revealed by modification-tolerant database search of mass spectra. Nature Microbiology, 2018, 3, 319-327.	13.3	71
16	MetaMiner: A Scalable Peptidogenomics Approach for Discovery of Ribosomal Peptide Natural Products with Blind Modifications from Microbial Communities. Cell Systems, 2019, 9, 600-608.e4.	6.2	46
17	MolDiscovery: learning mass spectrometry fragmentation of small molecules. Nature Communications, 2021, 12, 3718.	12.8	44
18	Assembling short reads from jumping libraries with large insert sizes. Bioinformatics, 2015, 31, 3262-3268.	4.1	40

#	ARTICLE	IF	CITATIONS
19	TandemTools: mapping long reads and assessing/improving assembly quality in extra-long tandem repeats. Bioinformatics, 2020, 36, i75-i83.	4.1	40
20	Spatial Molecular Architecture of the Microbial Community of a $\$ Peltigera $\$ Lichen. MSystems, 2016, 1, .	3.8	36
21	Tutorial: assessing metagenomics software with the CAMI benchmarking toolkit. Nature Protocols, 2021, 16, 1785-1801.	12.0	36
22	Integrating genomics and metabolomics for scalable non-ribosomal peptide discovery. Nature Communications, 2021, 12, 3225.	12.8	31
23	Metabolic Fingerprints from the Human Oral Microbiome Reveal a Vast Knowledge Gap of Secreted Small Peptidic Molecules. MSystems, 2017, 2, .	3.8	30
24	De Novo Peptide Sequencing Reveals Many Cyclopeptides in the Human Gut and Other Environments. Cell Systems, 2020, 10, 99-108.e5.	6.2	28
25	A Multi-Omics Characterization of the Natural Product Potential of Tropical Filamentous Marine Cyanobacteria. Marine Drugs, 2021, 19, 20.	4.6	19
26	Nerpa: A Tool for Discovering Biosynthetic Gene Clusters of Bacterial Nonribosomal Peptides. Metabolites, 2021, 11, 693.	2.9	11
27	NPS: scoring and evaluating the statistical significance of peptidic natural product–spectrum matches. Bioinformatics, 2019, 35, i315-i323.	4.1	5