Benjamin D Wandelt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5198207/publications.pdf

Version: 2024-02-01

268 papers 30,760 citations

4960 84 h-index 170

g-index

269 all docs

269 docs citations

times ranked

269

15533 citing authors

#	Article	IF	CITATIONS
1	Simulation-based Inference of Reionization Parameters from 3D Tomographic 21 cm Light-cone Images. Astrophysical Journal, 2022, 926, 151.	4.5	27
2	Neural Networks as Optimal Estimators to Marginalize Over Baryonic Effects. Astrophysical Journal, 2022, 928, 44.	4.5	8
3	The CAMELS Multifield Data Set: Learning the Universe's Fundamental Parameters with Artificial Intelligence. Astrophysical Journal, Supplement Series, 2022, 259, 61.	7.7	30
4	Breaking baryon-cosmology degeneracy with the electron density power spectrum. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 046.	5.4	11
5	Bayesian control variates for optimal covariance estimation with pairs of simulations and surrogates. Monthly Notices of the Royal Astronomical Society, 2022, 515, 1296-1315.	4.4	7
6	Testing the general theory of relativity using gravitational wave propagation from dark standard sirens. Monthly Notices of the Royal Astronomical Society, 2021, 502, 1136-1144.	4.4	50
7	CARPool: fast, accurate computation of large-scale structure statistics by pairing costly and cheap cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2021, 503, 1897-1914.	4.4	23
8	Velocity correction for Hubble constant measurements from standard sirens. Astronomy and Astrophysics, 2021, 646, A65.	5.1	54
9	Accurate precision cosmology with redshift unknown gravitational wave sources. Physical Review D, 2021, 103, .	4.7	79
10	Trouble beyond <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>H</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math> and the new cosmic triangles. Physical Review D, 2021, 103, .	4.7	43
11	The age of the Universe with globular clusters: reducing systematic uncertainties. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 017.	5.4	24
12	Snowmass2021 - Letter of interest cosmology intertwined I: Perspectives for the next decade. Astroparticle Physics, 2021, 131, 102606.	4.3	37
13	Detecting Neutrino Mass by Combining Matter Clustering, Halos, and Voids. Astrophysical Journal, 2021, 919, 24.	4.5	40
14	Snowmass2021 - Letter of interest cosmology intertwined IV: The age of the universe and its curvature. Astroparticle Physics, 2021, 131, 102607.	4.3	39
15	Cosmology intertwined III: <mml:math altimg="si4.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>f</mml:mi><mml:msub><mml:mi>if</mml:mi><mml:mn>8</mml:mn> and <mml:math altimg="si3.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>S</mml:mi><mml:mn>8</mml:mn></mml:msub></mml:math>.</mml:msub></mml:mrow></mml:math>	> 4.3	sub>182
16	Astroparticle Physics, 2021, 131, 102604. Bayesian estimation of our local motion from the Planck-2018 CMB temperature map. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 072.	5.4	17
17	Lossless, scalable implicit likelihood inference for cosmological fields. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 049.	5.4	20
18	Single frequency CMB B-mode inference with realistic foregrounds from a single training image. Monthly Notices of the Royal Astronomical Society: Letters, 2021, 510, L1-L6.	3.3	9

#	Article	IF	CITATIONS
19	Void halo mass function: A promising probe of neutrino mass. Physical Review D, 2020, 102, .	4.7	15
20	Multimessenger tests of gravity with weakly lensed gravitational waves. Physical Review D, 2020, 101, .	4.7	47
21	Neural physical engines for inferring the halo mass distribution function. Monthly Notices of the Royal Astronomical Society, 2020, 494, 50-61.	4.4	10
22	Super-resolution emulator of cosmological simulations using deep physical models. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4227-4236.	4.4	39
23	Probing the theory of gravity with gravitational lensing of gravitational waves and galaxy surveys. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1956-1970.	4.4	85
24	Perfectly parallel cosmological simulations using spatial comoving Lagrangian acceleration. Astronomy and Astrophysics, 2020, 639, A91.	5.1	7
25	A new probe of axion-like particles: CMB polarization distortions due to cluster magnetic fields. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 032-032.	5.4	15
26	Inferring the age of the universe with globular clusters. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 002-002.	5.4	55
27	Precision cosmology with voids in the final BOSS data. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 023-023.	5.4	48
28	Sampling-based inference of the primordial CMB and gravitational lensing. Physical Review D, 2020, 102, .	4.7	27
29	The Quijote Simulations. Astrophysical Journal, Supplement Series, 2020, 250, 2.	7.7	149
30	Bayesian delensing of CMB temperature and polarization. Physical Review D, 2019, 100, .	4.7	34
31	Signatures of cosmic reionization on the 21-cm two- and three-point correlation function I: quadratic bias modelling. Monthly Notices of the Royal Astronomical Society, 2019, 487, 3050-3068.	4.4	17
32	Cosmic shear: Inference from forward models. Physical Review D, 2019, 100, .	4.7	28
33	Massive neutrinos leave fingerprints on cosmic voids. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4413-4426.	4.4	75
34	Nuisance hardened data compression for fast likelihood-free inference. Monthly Notices of the Royal Astronomical Society, 2019, 488, 5093-5103.	4.4	63
35	Joint Bayesian analysis of large angular scale CMB temperature anomalies. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 007-007.	5.4	12
36	Wiener filtering and pure \$mathcal {E}/mathcal {B}\$ decomposition of CMB maps with anisotropic correlated noise. Monthly Notices of the Royal Astronomical Society, 2019, 490, 947-961.	4.4	10

#	Article	IF	Citations
37	Constraints on non-resonant photon-axion conversion from the Planck satellite data. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 031-031.	5.4	10
38	The local and distant Universe: stellar ages and $\langle i \rangle H \langle i \rangle \langle sub \rangle O \langle sub \rangle$. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 043-043.	5.4	48
39	Cosmological inference from Bayesian forward modelling of deep galaxy redshift surveys. Astronomy and Astrophysics, 2019, 621, A69.	5.1	37
40	How to measure CMB spectral distortions with an imaging telescope. Physical Review D, 2019, 100, .	4.7	8
41	Polarized anisotropic spectral distortions of the CMB: galactic and extragalactic constraints on photon-axion conversion. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 045-045.	5.4	20
42	Making maps of cosmological parameters. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 042-042.	5.4	8
43	Optimal and fast \$mathcal {E}/mathcal {B}\$ separation with a dual messenger field. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2825-2834.	4.4	8
44	Statistical Properties of Paired Fixed Fields. Astrophysical Journal, 2018, 867, 137.	4.5	42
45	Generalized massive optimal data compression. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 476, L60-L64.	3.3	56
46	Massive optimal data compression and density estimation for scalable, likelihood-free inference in cosmology. Monthly Notices of the Royal Astronomical Society, 2018, 477, 2874-2885.	4.4	87
47	Automatic physical inference with information maximizing neural networks. Physical Review D, 2018, 97, .	4.7	58
48	FSD: Frequency Space Differential measurement of CMB spectral distortions. Monthly Notices of the Royal Astronomical Society, 2018, 477, 4473-4482.	4.4	5
49	Void Profile from Planck Lensing Potential Map. Astrophysical Journal, 2017, 836, 156.	4.5	17
50	Wiener filter reloaded: fast signal reconstruction without preconditioning. Monthly Notices of the Royal Astronomical Society, 2017, 468, 1782-1793.	4.4	17
51	Pure <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>E</mml:mi></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>B</mml:mi> polarization maps via Wiener filtering. Physical Review D. 2017, 96</mml:math 	4.7	12
52	Measuring polarized emission in clusters in the CMB S4 era. Physical Review D, 2017, 96, .	4.7	12
53	The phase-space structure of nearby dark matter as constrained by the SDSS. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 049-049.	5.4	21
54	Semi-blind Bayesian inference of CMB map and power spectrum. Astronomy and Astrophysics, 2016, 588, A113.	5.1	10

#	Article	IF	Citations
55	Bayesian Cosmological inference beyond statistical isotropy. Journal of Physics: Conference Series, 2016, 759, 012062.	0.4	1
56	Constraints on Cosmology and Gravity from the Dynamics of Voids. Physical Review Letters, 2016, 117 , 091302 .	7.8	121
57	Comparing cosmic web classifiers using information theory. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 027-027.	5.4	17
58	Cosmological parameter constraints from CMB lensing with cosmic voids. Physical Review D, 2016, 93,	4.7	13
59	Joint resonant CMB power spectrum and bispectrum estimation. Physical Review D, 2016, 93, .	4.7	29
60	Halo detection via large-scale Bayesian inference. Monthly Notices of the Royal Astronomical Society, 2016, 460, 1340-1355.	4.4	0
61	Hierarchical cosmic shear power spectrum inference. Monthly Notices of the Royal Astronomical Society, 2016, 455, 4452-4466.	4.4	51
62	BAYESIAN SEMI-BLIND COMPONENT SEPARATION FOR FOREGROUND REMOVAL IN INTERFEROMETRIC 21 cm OBSERVATIONS. Astrophysical Journal, Supplement Series, 2016, 222, 3.	7.7	26
63	Linear perturbation theory of reionization in position space: Cosmological radiative transfer along the light cone. Physical Review D, 2015, 91, .	4.7	3
64	Counting voids to probe dark energy. Physical Review D, 2015, 92, .	4.7	107
65	Addendum: one-point remapping of Lagrangian perturbation theory in the mildly non-linear regime of cosmic structure formation. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 026-026.	5.4	1
66	Bayesian inference on the sphere beyond statistical isotropy. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 050-050.	5.4	8
67	<i>Planck</i> intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust. Astronomy and Astrophysics, 2015, 576, A104.	5.1	296
68	<i>Planck</i> intermediate results. XX. Comparison of polarized thermal emission from Galactic dust with simulations of MHD turbulence. Astronomy and Astrophysics, 2015, 576, A105.	5.1	119
69	<i>Planck</i> intermediate results. XXI. Comparison of polarized thermal emission from Galactic dust at 353 GHz with interstellar polarization in the visible. Astronomy and Astrophysics, 2015, 576, A106.	5.1	68
70	<i>Planck</i> intermediate results. XVIII. The millimetre and sub-millimetre emission from planetary nebulae. Astronomy and Astrophysics, 2015, 573, A6.	5.1	13
71	<i>Planck</i> intermediate results. XXII. Frequency dependence of thermal emission from Galactic dust in intensity and polarization. Astronomy and Ast A107.	ro ph ysics,	. 2 015 , 576
72	BAYESIAN INFERENCE OF CMB GRAVITATIONAL LENSING. Astrophysical Journal, 2015, 808, 152.	4.5	28

#	Article	IF	CITATIONS
73	Using cosmic voids to distinguish $\langle i \rangle f \langle i \rangle R \langle i \rangle$ gravity in future galaxy surveys. Monthly Notices of the Royal Astronomical Society, 2015, 451, 4215-4222.	4.4	79
74	Optimal estimator for resonance bispectra in the CMB. Physical Review D, 2015, 91, .	4.7	23
75	Using hybrid GPU/CPU kernel splitting to accelerate spherical convolutions. Astronomy and Computing, 2015, 11, 18-24.	1.7	0
76	Bayesian analysis of the dynamic cosmic web in the SDSS galaxy survey. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 015-015.	5 . 4	41
77	Dark matter voids in the SDSS galaxy survey. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 047-047.	5 . 4	31
78	Probing cosmology and gravity with redshift-space distortions around voids. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 036-036.	5 . 4	85
79	VIDE: The Void IDentification and Examination toolkit. Astronomy and Computing, 2015, 9, 1-9.	1.7	99
80	On the observability of coupled dark energy with cosmic voids. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 446, L1-L5.	3.3	26
81	Cosmic web-type classification using decision theory. Astronomy and Astrophysics, 2015, 576, L17.	5.1	13
82	<i>Planck</i> 2013 results. XIV. Zodiacal emission. Astronomy and Astrophysics, 2014, 571, A14.	5.1	90
83	<i>Planck</i> 2013 results. VI. High Frequency Instrument data processing. Astronomy and Astrophysics, 2014, 571, A6.	5.1	103
84	<i>Planck</i> 2013 results. X. HFI energetic particle effects: characterization, removal, and simulation. Astronomy and Astrophysics, 2014, 571, A10.	5.1	68
85	<i>Planck</i> 2013 results. XXXI. Consistency of the <i>Planck</i> data. Astronomy and Astrophysics, 2014, 571, A31.	5.1	69
86	<i>Planck</i> 2013 results. V. LFI calibration. Astronomy and Astrophysics, 2014, 571, A5.	5.1	67
87	<i>Planck</i> 2013 results. XXVII. Doppler boosting of the CMB: Eppur si muove. Astronomy and Astrophysics, 2014, 571, A27.	5.1	170
88	<i>Planck</i> intermediate results. XV. A study of anomalous microwave emission in Galactic clouds. Astronomy and Astrophysics, 2014, 565, A103.	5.1	67
89	<i>Planck</i> 2013 results. III. LFI systematic uncertainties. Astronomy and Astrophysics, 2014, 571, A3.	5.1	54
90	<i>Planck</i> 2013 results. XII. Diffuse component separation. Astronomy and Astrophysics, 2014, 571, A12.	5.1	216

#	Article	IF	CITATIONS
91	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2014, 566, A54.	5.1	80
92	<i>Planck</i> 2013 results. XIII. Galactic CO emission. Astronomy and Astrophysics, 2014, 571, A13.	5.1	144
93	<i>Planck</i> 2013 results. XI. All-sky model of thermal dust emission. Astronomy and Astrophysics, 2014, 571, All.	5.1	566
94	Modeling cosmic void statistics. Proceedings of the International Astronomical Union, 2014, 11, 538-541.	0.0	5
95	Testing cosmic geometry without dynamic distortions using voids. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 013-013.	5 . 4	35
96	PRISM (Polarized Radiation Imaging and Spectroscopy Mission): an extended white paper. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 006-006.	5.4	138
97	Sparse sampling, galaxy bias, and voids. Monthly Notices of the Royal Astronomical Society, 2014, 442, 462-471.	4.4	73
98	First measurement of gravitational lensing by cosmic voids in SDSS. Monthly Notices of the Royal Astronomical Society, 2014, 440, 2922-2927.	4.4	91
99	Sparse inpainting and isotropy. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 050-050.	5.4	5
100	Searching for oscillations in the primordial power spectrum. II. Constraints from Planck data. Physical Review D, 2014, 89, .	4.7	58
101	CMB polarization can constrain cosmology better than CMB temperature. Physical Review D, 2014, 90, .	4.7	61
102	Life, the universe, and everything. Significance, 2014, 11, 48-75.	0.4	3
103	Searching for oscillations in the primordial power spectrum. I. Perturbative approach. Physical Review D, 2014, 89, .	4.7	42
104	Angular correlation functions for models with logarithmic oscillations. Physical Review D, 2014, 89, .	4.7	14
105	Real-space density profile reconstruction of stacked voids. Monthly Notices of the Royal Astronomical Society, 2014, 443, 3238-3250.	4.4	30
106	A measurement of the Alcock–Paczyński effect using cosmic voids in the SDSS. Monthly Notices of the Royal Astronomical Society, 2014, 443, 2983-2990.	4.4	73
107	Cosmology with Void-Galaxy Correlations. Physical Review Letters, 2014, 112, 041304.	7.8	82
108	Universal Density Profile for Cosmic Voids. Physical Review Letters, 2014, 112, 251302.	7.8	137

#	Article	IF	CITATIONS
109	Voids in the SDSS DR9: observations, simulations, and the impact of the survey mask. Monthly Notices of the Royal Astronomical Society, 2014, 442, 3127-3137.	4.4	60
110	The dark matter of galaxy voids. Monthly Notices of the Royal Astronomical Society, 2014, 438, 3177-3187.	4.4	40
111	<i>Planck</i> 2013 results. I. Overview of products and scientific results. Astronomy and Astrophysics, 2014, 571, A1.	5.1	948
112	<i>Planck</i> 2013 results. XXX. Cosmic infrared background measurements and implications for star formation. Astronomy and Astrophysics, 2014, 571, A30.	5.1	210
113	<i>Planck</i> 2013 results. XXV. Searches for cosmic strings and other topological defects. Astronomy and Astrophysics, 2014, 571, A25.	5.1	223
114	<i>Planck</i> intermediate results. XIV. Dust emission at millimetre wavelengths in the Galactic plane. Astronomy and Astrophysics, 2014, 564, A45.	5.1	55
115	Planck intermediate results. Astronomy and Astrophysics, 2014, 566, A55.	5.1	134
116	<i>Planck</i> 2013 results. XV. CMB power spectra and likelihood. Astronomy and Astrophysics, 2014, 571, A15.	5.1	364
117	<i>Planck</i> >2013 results. XX. Cosmology from Sunyaev–Zeldovich cluster counts. Astronomy and Astrophysics, 2014, 571, A20.	5.1	465
118	<i>Planck</i> 2013 results. XXI. Power spectrum and high-order statistics of the <i>Planck</i> All-sky Compton parameter map. Astronomy and Astrophysics, 2014, 571, A21.	5.1	133
119	<i>Planck</i> 2013 results. XXIX. The <i>Planck</i> catalogue of Sunyaev-Zeldovich sources. Astronomy and Astrophysics, 2014, 571, A29.	5.1	380
120	<i>Planck</i> 2013 results. XXVIII. The <i>Planck</i> Catalogue of Compact Sources. Astronomy and Astrophysics, 2014, 571, A28.	5.1	162
121	<i>Planck</i> 2013 results. XIX. The integrated Sachs-Wolfe effect. Astronomy and Astrophysics, 2014, 571, A19.	5.1	126
122	<i>Planck</i> 2013 results. IX. HFI spectral response. Astronomy and Astrophysics, 2014, 571, A9.	5.1	129
123	<i>Planck</i> 2013 results. XXIII. Isotropy and statistics of the CMB. Astronomy and Astrophysics, 2014, 571, A23.	5.1	367
124	<i>Planck</i> 2013 results. VII. HFI time response and beams. Astronomy and Astrophysics, 2014, 571, A7.	5.1	99
125	<i>Planck</i> 2013 results. VIII. HFI photometric calibration and mapmaking. Astronomy and Astrophysics, 2014, 571, A8.	5.1	107
126	<i>Planck</i> 2013 results. XVIII. The gravitational lensing-infrared background correlation. Astronomy and Astrophysics, 2014, 571, A18.	5.1	116

#	Article	IF	CITATIONS
127	<i>Planck</i> >2013 results. IV. Low Frequency Instrument beams and window functions. Astronomy and Astrophysics, 2014, 571, A4.	5.1	41
128	<i>Planck</i> 2013 results. XXVI. Background geometry and topology of the Universe. Astronomy and Astrophysics, 2014, 571, A26.	5.1	91
129	<i>Planck</i> 2013 results. II. Low Frequency Instrument data processing. Astronomy and Astrophysics, 2014, 571, A2.	5.1	74
130	Probabilistic image reconstruction for radio interferometers. Monthly Notices of the Royal Astronomical Society, 2014, 438, 768-778.	4.4	25
131	Bayesian large-scale structure inference: initial conditions and the cosmic web. Proceedings of the International Astronomical Union, 2014, 10, 1-4.	0.0	1
132	Simulation of the analysis of interferometric microwave background polarization data. Proceedings of the International Astronomical Union, 2014, 10, 156-158.	0.0	0
133	<i>Planck</i> 2013 results. XVII. Gravitational lensing by large-scale structure. Astronomy and Astrophysics, 2014, 571, A17.	5.1	272
134	<i>Planck</i> 2013 results. XXIV. Constraints on primordial non-Gaussianity. Astronomy and Astrophysics, 2014, 571, A24.	5.1	350
135	<i>Planck</i> 2013 results. XXII. Constraints on inflation. Astronomy and Astrophysics, 2014, 571, A22.	5.1	806
136	<i>Planck</i> 2013 results. XVI. Cosmological parameters. Astronomy and Astrophysics, 2014, 571, A16.	5.1	4,703
137	Compressed convolution. Astronomy and Astrophysics, 2014, 561, A88.	5.1	1
138	The Komatsu Spergel Wandelt estimator for oscillations in the cosmic microwave background bispectrum. Astronomy and Astrophysics, 2014, 570, A94.	5.1	15
139	Gaussian Random Fields in Cosmostatistics. , 2013, , 87-105.		1
140	Insights into the content and spatial distribution of dust from the integrated spectral properties of galaxies. Monthly Notices of the Royal Astronomical Society, 2013, 432, 2061-2091.	4.4	103
141	One-point remapping of Lagrangian perturbation theory in the mildly non-linear regime of cosmic structure formation. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 048-048.	5.4	22
142	BAYESIAN INFERENCE OF POLARIZED COSMIC MICROWAVE BACKGROUND POWER SPECTRA FROM INTERFEROMETRIC DATA. Astrophysical Journal, Supplement Series, 2013, 204, 10.	7.7	6
143	METHODS FOR BAYESIAN POWER SPECTRUM INFERENCE WITH GALAXY SURVEYS. Astrophysical Journal, 2013, 779, 15.	4.5	39
144	MAXIMUM LIKELIHOOD ANALYSIS OF SYSTEMATIC ERRORS IN INTERFEROMETRIC OBSERVATIONS OF THE COSMIC MICROWAVE BACKGROUND. Astrophysical Journal, Supplement Series, 2013, 206, 24.	7.7	4

#	Article	IF	CITATIONS
145	SYSTEMATIC EFFECTS IN INTERFEROMETRIC OBSERVATIONS OF THE COSMIC MICROWAVE BACKGROUND POLARIZATION. Astrophysical Journal, Supplement Series, 2013, 207, 14.	7.7	4
146	A search for concentric rings with unusual variance in the 7-year WMAP temperature maps using a fast convolution approach. Monthly Notices of the Royal Astronomical Society, 2013, 429, 1376-1385.	4.4	6
147	Bayesian physical reconstruction of initial conditions from large-scale structure surveys. Monthly Notices of the Royal Astronomical Society, 2013, 432, 894-913.	4.4	196
148	<i>Planck</i> iiitermediate results. Astronomy and Astrophysics, 2013, 557, A52.	5.1	141
149	<i>Planck</i> Âintermediate results. XII: Diffuse Galactic components in the Gould Belt system. Astronomy and Astrophysics, 2013, 557, A53.	5.1	19
150	Efficient Wiener filtering without preconditioning. Astronomy and Astrophysics, 2013, 549, A111.	5.1	60
151	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2013, 554, A140.	5.1	101
152	Optimal bispectrum estimator and simulations of the CMB lensing-integrated Sachs Wolfe non-Gaussian signal. Astronomy and Astrophysics, 2013, 555, A82.	5.1	10
153	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2013, 550, A128.	5.1	20
154	<i>Planck</i> iiitermediate results. Astronomy and Astrophysics, 2013, 550, A130.	5.1	36
155	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 550, A131.	5.1	276
156	<i>Planck</i> iiitermediate results. Astronomy and Astrophysics, 2013, 554, A139.	5.1	106
157	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2013, 550, A129.	5.1	63
158	<i>Planck</i> iiitermediate results. Astronomy and Astrophysics, 2013, 550, A132.	5.1	15
159	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2013, 550, A133.	5.1	52
160	<i>Planck</i> iiitermediate results. Astronomy and Astrophysics, 2013, 550, A134.	5.1	94
161	BAYESIAN ANGULAR POWER SPECTRUM ANALYSIS OF INTERFEROMETRIC DATA. Astrophysical Journal, Supplement Series, 2012, 202, 9.	7.7	12
162	PRECISION COSMOGRAPHY WITH STACKED VOIDS. Astrophysical Journal, 2012, 754, 109.	4.5	176

#	Article	IF	CITATIONS
163	Fast calculation of the Fisher matrix for cosmic microwave background experiments. Astronomy and Astrophysics, 2012, 540, L6.	5.1	11
164	A PUBLIC VOID CATALOG FROM THE SDSS DR7 GALAXY REDSHIFT SURVEYS BASED ON THE WATERSHED TRANSFORM. Astrophysical Journal, 2012, 761, 44.	4.5	134
165	A FIRST APPLICATION OF THE ALCOCK-PACZYNSKI TEST TO STACKED COSMIC VOIDS. Astrophysical Journal, 2012, 761, 187.	4.5	104
166	Bayesian inference from photometric redshift surveys. Monthly Notices of the Royal Astronomical Society, 2012, 425, 1042-1056.	4.4	40
167	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2012, 543, A102.	5.1	50
168	Likelihood, Fisher information, and systematics of cosmic microwave background experiments. Astronomy and Astrophysics, 2012, 542, A60.	5.1	10
169	Robust, Data-Driven Inference in Non-linear Cosmostatistics. Lecture Notes in Statistics, 2012, , 27-40.	0.2	0
170	Estimation of Moments on the Sphere by Means of Fast Convolution. Lecture Notes in Statistics, 2012, , 487-489.	0.2	0
171	<i>Planck</i> early results. XXI. Properties of the interstellar medium in the Galactic plane. Astronomy and Astrophysics, 2011, 536, A21.	5.1	119
172	<i>Planck</i> early results. XVIII. The power spectrum of cosmic infrared background anisotropies. Astronomy and Astrophysics, 2011, 536, A18.	5.1	180
173	<i>Planck</i> early results. XIII. Statistical properties of extragalactic radio sources in the <i>Planck</i> Early Release Compact Source Catalogue. Astronomy and Astrophysics, 2011, 536, A13.	5.1	103
174	<i>Planck</i> early results. XVII. Origin of the submillimetre excess dust emission in the Magellanic Clouds. Astronomy and Astrophysics, 2011, 536, A17.	5.1	123
175	<i>Planck</i> early results. XII. Cluster Sunyaev-Zeldovich optical scaling relations. Astronomy and Astrophysics, 2011, 536, A12.	5.1	100
176	<i>Planck</i> early results. II. The thermal performance of <i>Planck</i> . Astronomy and Astrophysics, 2011, 536, A2.	5.1	91
177	ARKCoS: artifact-suppressed accelerated radial kernel convolution on the sphere. Astronomy and Astrophysics, 2011, 532, A35.	5.1	5
178	<i>Planck</i> early results. XX. New light on anomalous microwave emission from spinning dust grains. Astronomy and Astrophysics, 2011, 536, A20.	5.1	155
179	<i>Planck</i> early results. XXV. Thermal dust in nearby molecular clouds. Astronomy and Astrophysics, 2011, 536, A25.	5.1	184
180	<i>Planck</i> early results. XXII. The submillimetre properties of a sample of Galactic cold clumps. Astronomy and Astrophysics, 2011, 536, A22.	5.1	88

#	Article	IF	Citations
181	<i>Planck</i> early results. VI. The High Frequency Instrument data processing. Astronomy and Astrophysics, 2011, 536, A6.	5.1	116
182	<i>Planck</i> early results. XXIII. The first all-sky survey of Galactic cold clumps. Astronomy and Astrophysics, 2011, 536, A23.	5.1	152
183	<i>Planck</i> early results. XVI. The <i>Planck</i> view of nearby galaxies. Astronomy and Astrophysics, 2011, 536, A16.	5.1	74
184	<i>Planck</i> early results. VII. The Early Release Compact Source Catalogue. Astronomy and Astrophysics, 2011, 536, A7.	5.1	224
185	<i>Planck</i> early results. XIX. All-sky temperature and dust optical depth from <i>Planck</i> and IRAS. Constraints on the "dark gas―in our Galaxy. Astronomy and Astrophysics, 2011, 536, A19.	5.1	314
186	<i>Planck</i> early results. XXIV. Dust in the diffuse interstellar medium and the Galactic halo. Astronomy and Astrophysics, 2011, 536, A24.	5.1	179
187	<i>Planck</i> early results. X. Statistical analysis of Sunyaev-Zeldovich scaling relations for X-ray galaxy clusters. Astronomy and Astrophysics, 2011, 536, A10.	5.1	124
188	<i>Planck</i> early results. XI. Calibration of the local galaxy cluster Sunyaev-Zeldovich scaling relations. Astronomy and Astrophysics, 2011, 536, A11.	5.1	174
189	Planckearly results. XIV. ERCSC validation and extreme radio sources. Astronomy and Astrophysics, 2011, 536, A14.	5.1	61
190	<i>Planck</i> early results. IV. First assessment of the High Frequency Instrument in-flight performance. Astronomy and Astrophysics, 2011, 536, A4.	5.1	136
191	<i>Planck</i> early results. VIII. The all-sky early Sunyaev-Zeldovich cluster sample. Astronomy and Astrophysics, 2011, 536, A8.	5.1	335
192	<i>Planck</i> early results. XXVI. Detection with <i>Planck</i> and confirmation by <i>XMM-Newton</i> of PLCKÂG266.6â€"27.3, an exceptionally X-ray luminous and massive galaxy cluster at <i>z</i> Â- 1. Astronomy and Astrophysics, 2011, 536, A26.	5.1	72
193	<i>Planck</i> early results. XV. Spectral energy distributions and radio continuum spectra of northern extragalactic radio sources. Astronomy and Astrophysics, 2011, 536, A15.	5.1	93
194	<i>Planck</i> early results. I. The <i>Planck</i> mission. Astronomy and Astrophysics, 2011, 536, A1.	5.1	394
195	Probability distribution for non-Gaussianity estimators. Physical Review D, 2011, 84, .	4.7	15
196	<i>Planck</i> early results. IX. <i>XMM-Newton</i> follow-up for validation of <i>Planck</i> cluster candidates. Astronomy and Astrophysics, 2011, 536, A9.	5.1	126
197	MAGNETIC FIELDS IN INTERSTELLAR CLOUDS FROM ZEEMAN OBSERVATIONS: INFERENCE OF TOTAL FIELD STRENGTHS BY BAYESIAN ANALYSIS. Astrophysical Journal, 2010, 725, 466-479.	4.5	399
198	LOCAL NON-GAUSSIANITY IN THE COSMIC MICROWAVE BACKGROUND THE BAYESIAN WAY. Astrophysical Journal, 2010, 724, 1262-1269.	4.5	17

#	Article	IF	Citations
199	<i>Planck</i> pre-launch status: The <i>Planck</i> mission. Astronomy and Astrophysics, 2010, 520, A1.	5.1	268
200	O-V-S-Z AND FRIENDS: NON-GAUSSIANITY FROM INHOMOGENEOUS REIONIZATION. Astrophysical Journal, 2010, 711, 1310-1315.	4.5	2
201	The primordial non-Gaussianity of local type (flocalNL) in the WMAP 5-year data: the length distribution of CMB skeleton. Monthly Notices of the Royal Astronomical Society, 2010, 407, 2141-2156.	4.4	5
202	Dark matter halo merger and accretion probabilities in the excursion set formalism. Monthly Notices of the Royal Astronomical Society, 2010, 409, 694-700.	4.4	0
203	Estimating the impact of recombination uncertainties on the cosmological parameter constraints from cosmic microwave background experiments. Monthly Notices of the Royal Astronomical Society, 2010, 403, 439-452.	4.4	53
204	Precision cosmology with voids: definition, methods, dynamics. Monthly Notices of the Royal Astronomical Society, 2010, 403, 1392-1408.	4.4	112
205	Bayesian power-spectrum inference for large-scale structure data. Monthly Notices of the Royal Astronomical Society, 2010, 406, 60-85.	4.4	93
206	Probing local non-Gaussianities within a Bayesian framework. Astronomy and Astrophysics, 2010, 513, A59.	5.1	9
207	Primordial Non-Gaussianity in the Cosmic Microwave Background. Advances in Astronomy, 2010, 2010, 1-27.	1.1	52
208	FAST AND EXACT SPIN- <i>>s</i> > SPHERICAL HARMONIC TRANSFORMS. Astrophysical Journal, Supplement Series, 2010, 189, 255-260.	7.7	30
209	Khatri and Wandelt Reply:. Physical Review Letters, 2010, 105, .	7.8	3
210	FAST AND OPTIMAL COSMIC MICROWAVE BACKGROUND LENSING USING STATISTICAL INTERPOLATION ON THE SPHERE. Astrophysical Journal, Supplement Series, 2010, 191, 32-42.	7.7	11
211	Voids as a precision probe of dark energy. Physical Review D, 2010, 82, .	4.7	66
212	More on crinkles in the last scattering surface. Physical Review D, 2010, 81, .	4.7	14
213	A MARKOV CHAIN MONTE CARLO ALGORITHM FOR ANALYSIS OF LOW SIGNAL-TO-NOISE COSMIC MICROWAVE BACKGROUND DATA. Astrophysical Journal, 2009, 697, 258-268.	4.5	26
214	BAYESIAN ANALYSIS OF WHITE NOISE LEVELS IN THE FIVE-YEAR WMAP DATA. Astrophysical Journal, 2009, 702, L87-L90.	4.5	7
215	Making maps from Planck LFI 30ÂGHz data with asymmetric beams and cooler noise. Astronomy and Astrophysics, 2009, 493, 753-783.	5.1	25
216	BAYESIAN COMPONENT SEPARATION AND COSMIC MICROWAVE BACKGROUND ESTIMATION FOR THE FIVE-YEAR <i>WMAP</i> TEMPERATURE DATA. Astrophysical Journal, 2009, 705, 1607-1623.	4.5	33

#	Article	IF	Citations
217	Cosmic cartography of the large-scale structure with Sloan Digital Sky Survey data release 6. Monthly Notices of the Royal Astronomical Society, 2009, 400, 183-203.	4.4	64
218	Crinkles in the last scattering surface: Non-Gaussianity from inhomogeneous recombination. Physical Review D, 2009, 79, .	4.7	43
219	IMPROVED SIMULATION OF NON-GAUSSIAN TEMPERATURE AND POLARIZATION COSMIC MICROWAVE BACKGROUND MAPS. Astrophysical Journal, Supplement Series, 2009, 184, 264-270.	7.7	56
220	Probing Inflation with CMB Polarization., 2009,,.		252
221	21 cm radiation: A new probe of fundamental physics. Proceedings of the International Astronomical Union, 2009, 5, 312-313.	0.0	0
222	PReBeaM FOR PLANCK: A POLARIZED REGULARIZED BEAM DECONVOLUTION MAP-MAKING METHOD. Astrophysical Journal, Supplement Series, 2009, 181, 533-542.	7.7 	14
223	the Wilkinson Microwave Anisotropy Probe 3-Year Data at <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>7.8</td><td>212</td></mml:math>	7.8	212
224	display= 'Inline' > cmml:mn > 2.8 c/mml:mn > cmml:ml > lf c/mml:ml > c/mml:math > . Physical Review Letters, 2008, Publisher's Note: Temperature and polarization CMB maps from primordial non-Gaussianities of the local type [Phys. Rev. D > 76, 105016 (2007)]. Physical Review D, 2008, 77, .	4.7	1
225	Cosmic (Super)String Constraints from 21Âcm Radiation. Physical Review Letters, 2008, 100, 091302.	7.8	32
226	Fast Estimator of Primordial Nonâ€Gaussianity from Temperature and Polarization Anisotropies in the Cosmic Microwave Background. II. Partial Sky Coverage and Inhomogeneous Noise. Astrophysical Journal, 2008, 678, 578-582.	4.5	65
227	Precision Parameter Estimation and Machine Learning. , 2008, , .		0
228	21-cm Radiation: A New Probe of Variation in the Fine-Structure Constant. Physical Review Letters, 2007, 98, 111301.	7.8	30
229	Pico: Parameters for the Impatient Cosmologist. Astrophysical Journal, 2007, 654, 2-11.	4.5	76
230	Estimation of Polarized Power Spectra by Gibbs Sampling. Astrophysical Journal, 2007, 656, 653-660.	4.5	60
231	Fast Estimator of Primordial Nonâ€Gaussianity from Temperature and Polarization Anisotropies in the Cosmic Microwave Background. Astrophysical Journal, 2007, 664, 680-686.	4.5	98
232	A Reanalysis of the 3 YearWilkinson Microwave Anisotropy ProbeTemperature Power Spectrum and Likelihood. Astrophysical Journal, 2007, 656, 641-652.	4.5	66
233	Bayesian Analysis of the Low-Resolution Polarized 3 Year <i>WMAP</i> Sky Maps. Astrophysical Journal, 2007, 665, L1-L4.	4.5	30
234	Temperature and polarization CMB maps from primordial non-Gaussianities of the local type. Physical Review D, 2007, 76, .	4.7	51

#	Article	IF	CITATIONS
235	Making sky maps from Planck data. Astronomy and Astrophysics, 2007, 467, 761-775.	5.1	45
236	Making maps from Planck LFI 30 GHz data. Astronomy and Astrophysics, 2007, 471, 361-380.	5.1	25
237	Interacting quintessence, the coincidence problem, and cosmic acceleration. Physical Review D, 2006, 74, .	4.7	82
238	Optimal Image Reconstruction in Radio Interferometry. Astrophysical Journal, Supplement Series, 2006, 162, 401-416.	7.7	21
239	Angular power spectrum of the fastica cosmic microwave background component from Background Emission Anisotropy Scanning Telescope data. Monthly Notices of the Royal Astronomical Society, 2006, 369, 441-448.	4.4	12
240	The largest scale perturbations: A window on the physics of the beginning. New Astronomy Reviews, 2006, 50, 900-904.	12.8	0
241	A beginner's guide to the theory of CMB temperature and polarization power spectra in the line-of-sight formalism. Astroparticle Physics, 2006, 25, 151-166.	4.3	16
242	The Einstein polarization interferometer for cosmology (EPIC) and the millimeter-wave bolometric interferometer (MBI). New Astronomy Reviews, 2006, 50, 999-1008.	12.8	23
243	A Map of the Cosmic Microwave Background from the BEAST Experiment. Astrophysical Journal, Supplement Series, 2005, 158, 101-108.	7.7	14
244	Galactic Foreground Contribution to the BEAST Cosmic Microwave Background Anisotropy Maps. Astrophysical Journal, Supplement Series, 2005, 158, 109-117.	7.7	12
245	The Cosmic Microwave Background Anisotropy Power Spectrum from the BEAST Experiment. Astrophysical Journal, Supplement Series, 2005, 158, 93-100.	7.7	12
246	HEALPix: A Framework for Highâ€Resolution Discretization and Fast Analysis of Data Distributed on the Sphere. Astrophysical Journal, 2005, 622, 759-771.	4.5	4,312
247	CMB tomography: Reconstruction of adiabatic primordial scalar potential using temperature and polarization maps. Physical Review D, 2005, 71, .	4.7	21
248	Measuring Primordial Nonâ€Gaussianity in the Cosmic Microwave Background. Astrophysical Journal, 2005, 634, 14-19.	4.5	211
249	Global, exact cosmic microwave background data analysis using Gibbs sampling. Physical Review D, 2004, 70, .	4.7	178
250	Precision primordial4Hemeasurement from the CMB. Physical Review D, 2004, 69, .	4.7	16
251	Deconvolution map-making for cosmic microwave background observations. Physical Review D, 2004, 70, .	4.7	25
252	Bayesian Power Spectrum Analysis of the First-Year Wilkinson Microwave Anisotropy Probe Data. Astrophysical Journal, 2004, 617, L99-L102.	4.5	65

#	Article	IF	Citations
253	Power Spectrum Estimation from Highâ€Resolution Maps by Gibbs Sampling. Astrophysical Journal, Supplement Series, 2004, 155, 227-241.	7.7	170
254	The Hot and Cold Spots in the Wilkinson Microwave Anisotropy Probe Data Are Not Hot and Cold Enough. Astrophysical Journal, 2004, 613, L85-L88.	4.5	100
255	Fast, exact CMB power spectrum estimation for a certain class of observational strategies. Physical Review D, 2003, 67, .	4.7	34
256	Constraining strong baryon–dark-matter interactions with primordial nucleosynthesis and cosmic rays. Physical Review D, 2002, 65, .	4.7	52
257	Adaptive ray tracing for radiative transfer around point sources. Monthly Notices of the Royal Astronomical Society, 2002, 330, L53-L56.	4.4	122
258	Measurement of the Cosmic Microwave Background Bispectrum on the COBEDMR Sky Maps. Astrophysical Journal, 2002, 566, 19-29.	4.5	109
259	Cosmic microwave background anisotropy power spectrum statistics for high precision cosmology. Physical Review D, 2001, 64, .	4.7	132
260	Halo Properties in Cosmological Simulations of Selfâ€interacting Cold Dark Matter. Astrophysical Journal, 2001, 547, 574-589.	4.5	301
261	Fast convolution on the sphere. Physical Review D, 2001, 63, .	4.7	92
262	All-sky convolution for polarimetry experiments. Physical Review D, 2000, 62, .	4.7	36
263	Primordial Nonâ€Gaussianity: Baryon Bias and Gravitational Collapse of Cosmic String Wakes. Astrophysical Journal, 1998, 503, 67-76.	4. 5	2
264	Causality and the power spectrum. Physical Review D, 1996, 53, 618-621.	4.7	23
265	Fast likelihood-free cosmology with neural density estimators and active learning. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	78
266	Advanced Methods for CMB Data Analysis: the Big N 3 and How to Beat It., 0,, 435-446.		1
267	SSSpaNG! Stellar Spectra as Sparse, data-driven, Non-Gaussian processes. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	5
268	CARPool Covariance: Fast, unbiased covariance estimation for large-scale structure observables. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	14