Benjamin D Wandelt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5198207/publications.pdf

Version: 2024-02-01

268 papers 30,760 citations

4960 84 h-index 170

g-index

269 all docs

269 docs citations

times ranked

269

15533 citing authors

#	Article	IF	CITATIONS
1	<i>Planck</i> 2013 results. XVI. Cosmological parameters. Astronomy and Astrophysics, 2014, 571, A16.	5.1	4,703
2	HEALPix: A Framework for Highâ€Resolution Discretization and Fast Analysis of Data Distributed on the Sphere. Astrophysical Journal, 2005, 622, 759-771.	4.5	4,312
3	<i>Planck</i> 2013 results. I. Overview of products and scientific results. Astronomy and Astrophysics, 2014, 571, A1.	5.1	948
4	<i>Planck</i> 2013 results. XXII. Constraints on inflation. Astronomy and Astrophysics, 2014, 571, A22.	5.1	806
5	<i>Planck</i> 2013 results. XI. All-sky model of thermal dust emission. Astronomy and Astrophysics, 2014, 571, A11.	5.1	566
6	<i>Planck</i> >2013 results. XX. Cosmology from Sunyaev–Zeldovich cluster counts. Astronomy and Astrophysics, 2014, 571, A20.	5.1	465
7	MAGNETIC FIELDS IN INTERSTELLAR CLOUDS FROM ZEEMAN OBSERVATIONS: INFERENCE OF TOTAL FIELD STRENGTHS BY BAYESIAN ANALYSIS. Astrophysical Journal, 2010, 725, 466-479.	4.5	399
8	<i>Planck</i> early results. I. The <i>Planck</i> mission. Astronomy and Astrophysics, 2011, 536, A1.	5.1	394
9	<i>Planck</i> 2013 results. XXIX. The <i>Planck</i> catalogue of Sunyaev-Zeldovich sources. Astronomy and Astrophysics, 2014, 571, A29.	5.1	380
10	<i>Planck</i> 2013 results. XXIII. Isotropy and statistics of the CMB. Astronomy and Astrophysics, 2014, 571, A23.	5.1	367
11	<i>Planck</i> 2013 results. XV. CMB power spectra and likelihood. Astronomy and Astrophysics, 2014, 571, A15.	5.1	364
12	$\mbox{\sc i}\mbox{\sc Planck}\mbox{\sc /i}\mbox{\sc 2013}$ results. XXIV. Constraints on primordial non-Gaussianity. Astronomy and Astrophysics, 2014, 571, A24.	5.1	350
13	<i>Planck</i> early results. VIII. The all-sky early Sunyaev-Zeldovich cluster sample. Astronomy and Astrophysics, 2011, 536, A8.	5.1	335
14	<i>Planck</i> early results. XIX. All-sky temperature and dust optical depth from <i>Planck</i> and IRAS. Constraints on the "dark gas―in our Galaxy. Astronomy and Astrophysics, 2011, 536, A19.	5.1	314
15	Halo Properties in Cosmological Simulations of Selfâ€interacting Cold Dark Matter. Astrophysical Journal, 2001, 547, 574-589.	4.5	301
16	<i>Planck</i> intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust. Astronomy and Astrophysics, 2015, 576, A104.	5.1	296
17	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2013, 550, A131.	5.1	276
18	<i>Planck</i> 2013 results. XVII. Gravitational lensing by large-scale structure. Astronomy and Astrophysics, 2014, 571, A17.	5.1	272

#	Article	IF	CITATIONS
19	<i>Planck</i> pre-launch status: The <i>Planck</i> mission. Astronomy and Astrophysics, 2010, 520, A1.	5.1	268
20	Probing Inflation with CMB Polarization. , 2009, , .		252
21	<i>Planck</i> early results. VII. The Early Release Compact Source Catalogue. Astronomy and Astrophysics, 2011, 536, A7.	5.1	224
22	<i>Planck</i> 2013 results. XXV. Searches for cosmic strings and other topological defects. Astronomy and Astrophysics, 2014, 571, A25.	5.1	223
23	<i>Planck</i> 2013 results. XII. Diffuse component separation. Astronomy and Astrophysics, 2014, 571, A12. Evidence of Primordial Non-Gaussianity (<mml:math) (xmlns:mml="h</p></td><td>5.1
ttp://www</td><td>216
v.w3.org/199</td></tr><tr><th>24</th><td>the Wilkinson Microwave Anisotropy Probe 3-Year Data at<mml:math
xmlns:mml=" 0="" 10="" 1998="" 50="" 562="" etqq0="" http:="" math="" mathml"<="" overlock="" rgbt="" td="" tf="" tj="" www.w3.org=""><td>7.8</td><td>212</td></mml:math)>	7.8	212
25	display="inline"> <mml:mn>2.8</mml:mn> <mml:mi>Ïf</mml:mi> . Physical Review Letters, 2008, Measuring Primordial Nonâ€Gaussianity in the Cosmic Microwave Background. Astrophysical Journal, 2005, 634, 14-19.	4.5	211
26	<i>Planck</i> 2013 results. XXX. Cosmic infrared background measurements and implications for star formation. Astronomy and Astrophysics, 2014, 571, A30.	5.1	210
27	Bayesian physical reconstruction of initial conditions from large-scale structure surveys. Monthly Notices of the Royal Astronomical Society, 2013, 432, 894-913.	4.4	196
28	<i>Planck</i> early results. XXV. Thermal dust in nearby molecular clouds. Astronomy and Astrophysics, 2011, 536, A25.	5.1	184
29	Cosmology intertwined iii:		

#	Article	IF	CITATIONS
37	<i>Planck</i> 2013 results. XXVIII. The <i>Planck</i> Catalogue of Compact Sources. Astronomy and Astrophysics, 2014, 571, A28.	5.1	162
38	<i>Planck</i> early results. XX. New light on anomalous microwave emission from spinning dust grains. Astronomy and Astrophysics, 2011, 536, A20.	5.1	155
39	<i>Planck</i> early results. XXIII. The first all-sky survey of Galactic cold clumps. Astronomy and Astrophysics, 2011, 536, A23.	5.1	152
40	The Quijote Simulations. Astrophysical Journal, Supplement Series, 2020, 250, 2.	7.7	149
41	<i>Planck</i> 2013 results. XIII. Galactic CO emission. Astronomy and Astrophysics, 2014, 571, A13.	5.1	144
42	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 557, A52.	5.1	141
43	PRISM (Polarized Radiation Imaging and Spectroscopy Mission): an extended white paper. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 006-006.	5.4	138
44	Universal Density Profile for Cosmic Voids. Physical Review Letters, 2014, 112, 251302.	7.8	137
45	<i>Planck</i> early results. IV. First assessment of the High Frequency Instrument in-flight performance. Astronomy and Astrophysics, 2011, 536, A4.	5.1	136
46	A PUBLIC VOID CATALOG FROM THE SDSS DR7 GALAXY REDSHIFT SURVEYS BASED ON THE WATERSHED TRANSFORM. Astrophysical Journal, 2012, 761, 44.	4.5	134
47	Planck intermediate results. Astronomy and Astrophysics, 2014, 566, A55.	5.1	134
48	<i>Planck</i> 2013 results. XXI. Power spectrum and high-order statistics of the <i>Planck</i> All-sky Compton parameter map. Astronomy and Astrophysics, 2014, 571, A21.	5.1	133
49	Cosmic microwave background anisotropy power spectrum statistics for high precision cosmology. Physical Review D, 2001, 64, .	4.7	132
50	<i>Planck</i> 2013 results. IX. HFI spectral response. Astronomy and Astrophysics, 2014, 571, A9.	5.1	129
51	<i>Planck</i> intermediate results. XXII. Frequency dependence of thermal emission from Galactic dust in intensity and polarization. Astronomy and Ast A107.	ro ph ysics,	2 01 5, 576,
52	<i>Planck</i> 2013 results. XIX. The integrated Sachs-Wolfe effect. Astronomy and Astrophysics, 2014, 571, A19.	5.1	126
53	<i>Planck</i> early results. IX. <i>XMM-Newton</i> follow-up for validation of <i>Planck</i> candidates. Astronomy and Astrophysics, 2011, 536, A9.	5.1	126
54	<i>Planck</i> early results. X. Statistical analysis of Sunyaev-Zeldovich scaling relations for X-ray galaxy clusters. Astronomy and Astrophysics, 2011, 536, A10.	5.1	124

#	Article	IF	CITATIONS
55	<i>Planck</i> early results. XVII. Origin of the submillimetre excess dust emission in the Magellanic Clouds. Astronomy and Astrophysics, 2011, 536, A17.	5.1	123
56	Adaptive ray tracing for radiative transfer around point sources. Monthly Notices of the Royal Astronomical Society, 2002, 330, L53-L56.	4.4	122
57	Constraints on Cosmology and Gravity from the Dynamics of Voids. Physical Review Letters, 2016, 117, 091302.	7.8	121
58	<i>Planck</i> early results. XXI. Properties of the interstellar medium in the Galactic plane. Astronomy and Astrophysics, 2011, 536, A21.	5.1	119
59	<i>Planck</i> intermediate results. XX. Comparison of polarized thermal emission from Galactic dust with simulations of MHD turbulence. Astronomy and Astrophysics, 2015, 576, A105.	5.1	119
60	<i>Planck</i> early results. VI. The High Frequency Instrument data processing. Astronomy and Astrophysics, 2011, 536, A6.	5.1	116
61	<i>Planck</i> 2013 results. XVIII. The gravitational lensing-infrared background correlation. Astronomy and Astrophysics, 2014, 571, A18.	5.1	116
62	Precision cosmology with voids: definition, methods, dynamics. Monthly Notices of the Royal Astronomical Society, 2010, 403, 1392-1408.	4.4	112
63	Measurement of the Cosmic Microwave Background Bispectrum on theCOBEDMR Sky Maps. Astrophysical Journal, 2002, 566, 19-29.	4.5	109
64	$\mbox{\sc i}\mbox{\sc Planck}\mbox{\sc /i}\mbox{\sc 2013}$ results. VIII. HFI photometric calibration and mapmaking. Astronomy and Astrophysics, 2014, 571, A8.	5.1	107
65	Counting voids to probe dark energy. Physical Review D, 2015, 92, .	4.7	107
66	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 554, A139.	5.1	106
67	A FIRST APPLICATION OF THE ALCOCK-PACZYNSKI TEST TO STACKED COSMIC VOIDS. Astrophysical Journal, 2012, 761, 187.	4.5	104
68	<i>Planck</i> early results. XIII. Statistical properties of extragalactic radio sources in the <i>Planck</i> Early Release Compact Source Catalogue. Astronomy and Astrophysics, 2011, 536, A13.	5.1	103
69	Insights into the content and spatial distribution of dust from the integrated spectral properties of galaxies. Monthly Notices of the Royal Astronomical Society, 2013, 432, 2061-2091.	4.4	103
70	<i>Planck</i> 2013 results. VI. High Frequency Instrument data processing. Astronomy and Astrophysics, 2014, 571, A6.	5.1	103
71	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 554, A140.	5.1	101
72	The Hot and Cold Spots in the Wilkinson Microwave Anisotropy Probe Data Are Not Hot and Cold Enough. Astrophysical Journal, 2004, 613, L85-L88.	4.5	100

#	Article	IF	CITATIONS
73	<i>Planck</i> early results. XII. Cluster Sunyaev-Zeldovich optical scaling relations. Astronomy and Astrophysics, 2011, 536, A12.	5.1	100
74	<i>Planck</i> 2013 results. VII. HFI time response and beams. Astronomy and Astrophysics, 2014, 571, A7.	5.1	99
75	VIDE: The Void IDentification and Examination toolkit. Astronomy and Computing, 2015, 9, 1-9.	1.7	99
76	Fast Estimator of Primordial Nonâ€Gaussianity from Temperature and Polarization Anisotropies in the Cosmic Microwave Background. Astrophysical Journal, 2007, 664, 680-686.	4.5	98
77	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 550, A134.	5.1	94
78	Bayesian power-spectrum inference for large-scale structure data. Monthly Notices of the Royal Astronomical Society, 2010, 406, 60-85.	4.4	93
79	<i>Planck</i> early results. XV. Spectral energy distributions and radio continuum spectra of northern extragalactic radio sources. Astronomy and Astrophysics, 2011, 536, A15.	5.1	93
80	Fast convolution on the sphere. Physical Review D, 2001, 63, .	4.7	92
81	<i>Planck</i> early results. II. The thermal performance of <i i="" planck<=""> Astronomy and Astrophysics, 2011, 536, A2.</i>	5.1	91
82	First measurement of gravitational lensing by cosmic voids in SDSS. Monthly Notices of the Royal Astronomical Society, 2014, 440, 2922-2927.	4.4	91
83	<i>Planck</i> 2013 results. XXVI. Background geometry and topology of the Universe. Astronomy and Astrophysics, 2014, 571, A26.	5.1	91
84	<i>Planck</i> 2013 results. XIV. Zodiacal emission. Astronomy and Astrophysics, 2014, 571, A14.	5.1	90
85	<i>Planck</i> early results. XXII. The submillimetre properties of a sample of Galactic cold clumps. Astronomy and Astrophysics, 2011, 536, A22.	5.1	88
86	Massive optimal data compression and density estimation for scalable, likelihood-free inference in cosmology. Monthly Notices of the Royal Astronomical Society, 2018, 477, 2874-2885.	4.4	87
87	Probing cosmology and gravity with redshift-space distortions around voids. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 036-036.	5.4	85
88	Probing the theory of gravity with gravitational lensing of gravitational waves and galaxy surveys. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1956-1970.	4.4	85
89	Interacting quintessence, the coincidence problem, and cosmic acceleration. Physical Review D, 2006, 74, .	4.7	82
90	Cosmology with Void-Galaxy Correlations. Physical Review Letters, 2014, 112, 041304.	7.8	82

#	Article	IF	CITATIONS
91	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2014, 566, A54.	5.1	80
92	Using cosmic voids to distinguish $<$ i>f $<$ /i> $<$ ($<$ i>R $<$ /i $>)$ gravity in future galaxy surveys. Monthly Notices of the Royal Astronomical Society, 2015, 451, 4215-4222.	4.4	79
93	Accurate precision cosmology with redshift unknown gravitational wave sources. Physical Review D, 2021, 103, .	4.7	79
94	Fast likelihood-free cosmology with neural density estimators and active learning. Monthly Notices of the Royal Astronomical Society, $0, \dots$	4.4	78
95	Pico: Parameters for the Impatient Cosmologist. Astrophysical Journal, 2007, 654, 2-11.	4.5	76
96	Massive neutrinos leave fingerprints on cosmic voids. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4413-4426.	4.4	75
97	<i>Planck</i> early results. XVI. The <i>Planck</i> view of nearby galaxies. Astronomy and Astrophysics, 2011, 536, A16.	5.1	74
98	<i>Planck</i> 2013 results. II. Low Frequency Instrument data processing. Astronomy and Astrophysics, 2014, 571, A2.	5.1	74
99	Sparse sampling, galaxy bias, and voids. Monthly Notices of the Royal Astronomical Society, 2014, 442, 462-471.	4.4	73
100	A measurement of the Alcock–Paczyński effect using cosmic voids in the SDSS. Monthly Notices of the Royal Astronomical Society, 2014, 443, 2983-2990.	4.4	73
101	<i>Planck</i> early results. XXVI. Detection with <i>Planck</i> and confirmation by <i>XMM-Newton</i> of PLCKÂG266.6–27.3, an exceptionally X-ray luminous and massive galaxy cluster at <i>z</i> Â-Â 1. Astronomy and Astrophysics, 2011, 536, A26.	5.1	72
102	<i>Planck</i> 2013 results. XXXI. Consistency of the <i>Planck</i> data. Astronomy and Astrophysics, 2014, 571, A31.	5.1	69
103	<i>Planck</i> 2013 results. X. HFI energetic particle effects: characterization, removal, and simulation. Astronomy and Astrophysics, 2014, 571, A10.	5.1	68
104	<i>Planck</i> ii>intermediate results. XXI. Comparison of polarized thermal emission from Galactic dust at 353 GHz with interstellar polarization in the visible. Astronomy and Astrophysics, 2015, 576, A106.	5.1	68
105	<i>Planck</i> 2013 results. V. LFI calibration. Astronomy and Astrophysics, 2014, 571, A5.	5.1	67
106	<i>Planck</i> intermediate results. XV. A study of anomalous microwave emission in Galactic clouds. Astronomy and Astrophysics, 2014, 565, A103.	5.1	67
107	A Reanalysis of the 3 YearWilkinson Microwave Anisotropy ProbeTemperature Power Spectrum and Likelihood. Astrophysical Journal, 2007, 656, 641-652.	4.5	66
108	Voids as a precision probe of dark energy. Physical Review D, 2010, 82, .	4.7	66

#	Article	IF	CITATIONS
109	Bayesian Power Spectrum Analysis of the First-Year Wilkinson Microwave Anisotropy Probe Data. Astrophysical Journal, 2004, 617, L99-L102.	4.5	65
110	Fast Estimator of Primordial Nonâ€Gaussianity from Temperature and Polarization Anisotropies in the Cosmic Microwave Background. II. Partial Sky Coverage and Inhomogeneous Noise. Astrophysical Journal, 2008, 678, 578-582.	4.5	65
111	Cosmic cartography of the large-scale structure with Sloan Digital Sky Survey data release 6. Monthly Notices of the Royal Astronomical Society, 2009, 400, 183-203.	4.4	64
112	<i>Planck</i> iiitermediate results. Astronomy and Astrophysics, 2013, 550, A129.	5.1	63
113	Nuisance hardened data compression for fast likelihood-free inference. Monthly Notices of the Royal Astronomical Society, 2019, 488, 5093-5103.	4.4	63
114	Planckearly results. XIV. ERCSC validation and extreme radio sources. Astronomy and Astrophysics, 2011, 536, A14.	5.1	61
115	CMB polarization can constrain cosmology better than CMB temperature. Physical Review D, 2014, 90, .	4.7	61
116	Estimation of Polarized Power Spectra by Gibbs Sampling. Astrophysical Journal, 2007, 656, 653-660.	4.5	60
117	Efficient Wiener filtering without preconditioning. Astronomy and Astrophysics, 2013, 549, A111.	5.1	60
118	Voids in the SDSS DR9: observations, simulations, and the impact of the survey mask. Monthly Notices of the Royal Astronomical Society, 2014, 442, 3127-3137.	4.4	60
119	Searching for oscillations in the primordial power spectrum. II. Constraints from Planck data. Physical Review D, 2014, 89, .	4.7	58
120	Automatic physical inference with information maximizing neural networks. Physical Review D, 2018, 97, .	4.7	58
121	IMPROVED SIMULATION OF NON-GAUSSIAN TEMPERATURE AND POLARIZATION COSMIC MICROWAVE BACKGROUND MAPS. Astrophysical Journal, Supplement Series, 2009, 184, 264-270.	7.7	56
122	Generalized massive optimal data compression. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 476, L60-L64.	3.3	56
123	<i>Planck</i> intermediate results. XIV. Dust emission at millimetre wavelengths in the Galactic plane. Astronomy and Astrophysics, 2014, 564, A45.	5.1	55
124	Inferring the age of the universe with globular clusters. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 002-002.	5.4	55
125	<i>Planck</i> 2013 results. III. LFI systematic uncertainties. Astronomy and Astrophysics, 2014, 571, A3.	5.1	54
126	Velocity correction for Hubble constant measurements from standard sirens. Astronomy and Astrophysics, 2021, 646, A65.	5.1	54

#	Article	IF	Citations
127	Estimating the impact of recombination uncertainties on the cosmological parameter constraints from cosmic microwave background experiments. Monthly Notices of the Royal Astronomical Society, 2010, 403, 439-452.	4.4	53
128	Constraining strong baryon–dark-matter interactions with primordial nucleosynthesis and cosmic rays. Physical Review D, 2002, 65, .	4.7	52
129	Primordial Non-Gaussianity in the Cosmic Microwave Background. Advances in Astronomy, 2010, 2010, 1-27.	1.1	52
130	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 550, A133.	5.1	52
131	Temperature and polarization CMB maps from primordial non-Gaussianities of the local type. Physical Review D, 2007, 76, .	4.7	51
132	Hierarchical cosmic shear power spectrum inference. Monthly Notices of the Royal Astronomical Society, 2016, 455, 4452-4466.	4.4	51
133	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2012, 543, A102.	5.1	50
134	Testing the general theory of relativity using gravitational wave propagation from dark standard sirens. Monthly Notices of the Royal Astronomical Society, 2021, 502, 1136-1144.	4.4	50
135	The local and distant Universe: stellar ages and <i>H</i> ₀ . Journal of Cosmology and Astroparticle Physics, 2019, 2019, 043-043.	5.4	48
136	Precision cosmology with voids in the final BOSS data. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 023-023.	5.4	48
137	Multimessenger tests of gravity with weakly lensed gravitational waves. Physical Review D, 2020, 101, .	4.7	47
138	Making sky maps from Planck data. Astronomy and Astrophysics, 2007, 467, 761-775.	5.1	45
139	Crinkles in the last scattering surface: Non-Gaussianity from inhomogeneous recombination. Physical Review D, 2009, 79, .	4.7	43
140	Trouble beyond <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>H</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math> and the new cosmic triangles. Physical Review D, 2021, 103, .	4.7	43
141	Searching for oscillations in the primordial power spectrum. I. Perturbative approach. Physical Review D, 2014, 89, .	4.7	42
142	Statistical Properties of Paired Fixed Fields. Astrophysical Journal, 2018, 867, 137.	4.5	42
143	<i>Planck</i> 2013 results. IV. Low Frequency Instrument beams and window functions. Astronomy and Astrophysics, 2014, 571, A4.	5.1	41
144	Bayesian analysis of the dynamic cosmic web in the SDSS galaxy survey. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 015-015.	5.4	41

#	Article	IF	CITATIONS
145	Bayesian inference from photometric redshift surveys. Monthly Notices of the Royal Astronomical Society, 2012, 425, 1042-1056.	4.4	40
146	The dark matter of galaxy voids. Monthly Notices of the Royal Astronomical Society, 2014, 438, 3177-3187.	4.4	40
147	Detecting Neutrino Mass by Combining Matter Clustering, Halos, and Voids. Astrophysical Journal, 2021, 919, 24.	4.5	40
148	METHODS FOR BAYESIAN POWER SPECTRUM INFERENCE WITH GALAXY SURVEYS. Astrophysical Journal, 2013, 779, 15.	4.5	39
149	Super-resolution emulator of cosmological simulations using deep physical models. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4227-4236.	4.4	39
150	Snowmass2021 - Letter of interest cosmology intertwined IV: The age of the universe and its curvature. Astroparticle Physics, 2021, 131, 102607.	4.3	39
151	Cosmological inference from Bayesian forward modelling of deep galaxy redshift surveys. Astronomy and Astrophysics, 2019, 621, A69.	5.1	37
152	Snowmass2021 - Letter of interest cosmology intertwined I: Perspectives for the next decade. Astroparticle Physics, 2021, 131, 102606.	4.3	37
153	All-sky convolution for polarimetry experiments. Physical Review D, 2000, 62, .	4.7	36
154	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2013, 550, A130.	5.1	36
155	Testing cosmic geometry without dynamic distortions using voids. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 013-013.	5.4	35
156	Fast, exact CMB power spectrum estimation for a certain class of observational strategies. Physical Review D, 2003, 67, .	4.7	34
157	Bayesian delensing of CMB temperature and polarization. Physical Review D, 2019, 100, .	4.7	34
158	BAYESIAN COMPONENT SEPARATION AND COSMIC MICROWAVE BACKGROUND ESTIMATION FOR THE FIVE-YEAR <i>WMAP</i> TEMPERATURE DATA. Astrophysical Journal, 2009, 705, 1607-1623.	4.5	33
159	Cosmic (Super)String Constraints from 21Âcm Radiation. Physical Review Letters, 2008, 100, 091302.	7.8	32
160	Dark matter voids in the SDSS galaxy survey. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 047-047.	5.4	31
161	21-cm Radiation: A New Probe of Variation in the Fine-Structure Constant. Physical Review Letters, 2007, 98, 111301.	7.8	30
162	Bayesian Analysis of the Low-Resolution Polarized 3 Year <i>WMAP</i> Sky Maps. Astrophysical Journal, 2007, 665, L1-L4.	4.5	30

#	Article	IF	Citations
163	FAST AND EXACT SPIN- <i>>s</i> > SPHERICAL HARMONIC TRANSFORMS. Astrophysical Journal, Supplement Series, 2010, 189, 255-260.	7.7	30
164	Real-space density profile reconstruction of stacked voids. Monthly Notices of the Royal Astronomical Society, 2014, 443, 3238-3250.	4.4	30
165	The CAMELS Multifield Data Set: Learning the Universe's Fundamental Parameters with Artificial Intelligence. Astrophysical Journal, Supplement Series, 2022, 259, 61.	7.7	30
166	Joint resonant CMB power spectrum and bispectrum estimation. Physical Review D, 2016, 93, .	4.7	29
167	BAYESIAN INFERENCE OF CMB GRAVITATIONAL LENSING. Astrophysical Journal, 2015, 808, 152.	4.5	28
168	Cosmic shear: Inference from forward models. Physical Review D, 2019, 100, .	4.7	28
169	Sampling-based inference of the primordial CMB and gravitational lensing. Physical Review D, 2020, 102, .	4.7	27
170	Simulation-based Inference of Reionization Parameters from 3D Tomographic 21 cm Light-cone Images. Astrophysical Journal, 2022, 926, 151.	4.5	27
171	A MARKOV CHAIN MONTE CARLO ALGORITHM FOR ANALYSIS OF LOW SIGNAL-TO-NOISE COSMIC MICROWAVE BACKGROUND DATA. Astrophysical Journal, 2009, 697, 258-268.	4.5	26
172	On the observability of coupled dark energy with cosmic voids. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 446, L1-L5.	3.3	26
173	BAYESIAN SEMI-BLIND COMPONENT SEPARATION FOR FOREGROUND REMOVAL IN INTERFEROMETRIC 21 cm OBSERVATIONS. Astrophysical Journal, Supplement Series, 2016, 222, 3.	7.7	26
174	Deconvolution map-making for cosmic microwave background observations. Physical Review D, 2004, 70, .	4.7	25
175	Making maps from Planck LFI 30ÂGHz data with asymmetric beams and cooler noise. Astronomy and Astrophysics, 2009, 493, 753-783.	5.1	25
176	Probabilistic image reconstruction for radio interferometers. Monthly Notices of the Royal Astronomical Society, 2014, 438, 768-778.	4.4	25
177	Making maps from Planck LFI 30 GHz data. Astronomy and Astrophysics, 2007, 471, 361-380.	5.1	25
178	The age of the Universe with globular clusters: reducing systematic uncertainties. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 017.	5.4	24
179	Causality and the power spectrum. Physical Review D, 1996, 53, 618-621.	4.7	23
180	The Einstein polarization interferometer for cosmology (EPIC) and the millimeter-wave bolometric interferometer (MBI). New Astronomy Reviews, 2006, 50, 999-1008.	12.8	23

#	Article	IF	CITATIONS
181	Optimal estimator for resonance bispectra in the CMB. Physical Review D, 2015, 91, .	4.7	23
182	CARPool: fast, accurate computation of large-scale structure statistics by pairing costly and cheap cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2021, 503, 1897-1914.	4.4	23
183	One-point remapping of Lagrangian perturbation theory in the mildly non-linear regime of cosmic structure formation. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 048-048.	5.4	22
184	CMB tomography: Reconstruction of adiabatic primordial scalar potential using temperature and polarization maps. Physical Review D, 2005, 71, .	4.7	21
185	Optimal Image Reconstruction in Radio Interferometry. Astrophysical Journal, Supplement Series, 2006, 162, 401-416.	7.7	21
186	The phase-space structure of nearby dark matter as constrained by the SDSS. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 049-049.	5.4	21
187	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 550, A128.	5.1	20
188	Polarized anisotropic spectral distortions of the CMB: galactic and extragalactic constraints on photon-axion conversion. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 045-045.	5.4	20
189	Lossless, scalable implicit likelihood inference for cosmological fields. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 049.	5.4	20
190	<i>Planck</i> Âintermediate results. XII: Diffuse Galactic components in the Gould Belt system. Astronomy and Astrophysics, 2013, 557, A53.	5.1	19
191	LOCAL NON-GAUSSIANITY IN THE COSMIC MICROWAVE BACKGROUND THE BAYESIAN WAY. Astrophysical Journal, 2010, 724, 1262-1269.	4.5	17
192	Comparing cosmic web classifiers using information theory. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 027-027.	5.4	17
193	Void Profile from Planck Lensing Potential Map. Astrophysical Journal, 2017, 836, 156.	4.5	17
194	Wiener filter reloaded: fast signal reconstruction without preconditioning. Monthly Notices of the Royal Astronomical Society, 2017, 468, 1782-1793.	4.4	17
195	Signatures of cosmic reionization on the 21-cm two- and three-point correlation function I: quadratic bias modelling. Monthly Notices of the Royal Astronomical Society, 2019, 487, 3050-3068.	4.4	17
196	Bayesian estimation of our local motion from the Planck-2018 CMB temperature map. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 072.	5 . 4	17
197	Precision primordial4Hemeasurement from the CMB. Physical Review D, 2004, 69, .	4.7	16
198	A beginner's guide to the theory of CMB temperature and polarization power spectra in the line-of-sight formalism. Astroparticle Physics, 2006, 25, 151-166.	4.3	16

#	Article	IF	Citations
199	Probability distribution for non-Gaussianity estimators. Physical Review D, 2011, 84, .	4.7	15
200	<i>Planck</i> iiitermediate results. Astronomy and Astrophysics, 2013, 550, A132.	5.1	15
201	Void halo mass function: A promising probe of neutrino mass. Physical Review D, 2020, 102, .	4.7	15
202	The Komatsu Spergel Wandelt estimator for oscillations in the cosmic microwave background bispectrum. Astronomy and Astrophysics, 2014, 570, A94.	5.1	15
203	A new probe of axion-like particles: CMB polarization distortions due to cluster magnetic fields. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 032-032.	5.4	15
204	A Map of the Cosmic Microwave Background from the BEAST Experiment. Astrophysical Journal, Supplement Series, 2005, 158, 101-108.	7.7	14
205	PReBeaM FOR PLANCK: A POLARIZED REGULARIZED BEAM DECONVOLUTION MAP-MAKING METHOD. Astrophysical Journal, Supplement Series, 2009, 181, 533-542.	7.7	14
206	More on crinkles in the last scattering surface. Physical Review D, 2010, 81, .	4.7	14
207	Angular correlation functions for models with logarithmic oscillations. Physical Review D, 2014, 89, .	4.7	14
208	CARPool Covariance: Fast, unbiased covariance estimation for large-scale structure observables. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	14
209	<i>Planck</i> intermediate results. XVIII. The millimetre and sub-millimetre emission from planetary nebulae. Astronomy and Astrophysics, 2015, 573, A6.	5.1	13
210	Cosmological parameter constraints from CMB lensing with cosmic voids. Physical Review D, 2016, 93,	4.7	13
211	Cosmic web-type classification using decision theory. Astronomy and Astrophysics, 2015, 576, L17.	5.1	13
212	Galactic Foreground Contribution to the BEAST Cosmic Microwave Background Anisotropy Maps. Astrophysical Journal, Supplement Series, 2005, 158, 109-117.	7.7	12
213	The Cosmic Microwave Background Anisotropy Power Spectrum from the BEAST Experiment. Astrophysical Journal, Supplement Series, 2005, 158, 93-100.	7.7	12
214	Angular power spectrum of the fastica cosmic microwave background component from Background Emission Anisotropy Scanning Telescope data. Monthly Notices of the Royal Astronomical Society, 2006, 369, 441-448.	4.4	12
215	BAYESIAN ANGULAR POWER SPECTRUM ANALYSIS OF INTERFEROMETRIC DATA. Astrophysical Journal, Supplement Series, 2012, 202, 9.	7.7	12
216	Pure <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>E</mml:mi></mml:math> and <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>B</mml:mi></mml:math> polarization maps via Wiener filtering. Physical Review D, 2017, 96, .	4.7	12

#	Article	IF	Citations
217	Measuring polarized emission in clusters in the CMB S4 era. Physical Review D, 2017, 96, .	4.7	12
218	Joint Bayesian analysis of large angular scale CMB temperature anomalies. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 007-007.	5.4	12
219	FAST AND OPTIMAL COSMIC MICROWAVE BACKGROUND LENSING USING STATISTICAL INTERPOLATION ON THE SPHERE. Astrophysical Journal, Supplement Series, 2010, 191, 32-42.	7.7	11
220	Fast calculation of the Fisher matrix for cosmic microwave background experiments. Astronomy and Astrophysics, 2012, 540, L6.	5.1	11
221	Breaking baryon-cosmology degeneracy with the electron density power spectrum. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 046.	5.4	11
222	Optimal bispectrum estimator and simulations of the CMB lensing-integrated Sachs Wolfe non-Gaussian signal. Astronomy and Astrophysics, 2013, 555, A82.	5.1	10
223	Semi-blind Bayesian inference of CMB map and power spectrum. Astronomy and Astrophysics, 2016, 588, A113.	5.1	10
224	Wiener filtering and pure \$mathcal {E}/mathcal {B}\$ decomposition of CMB maps with anisotropic correlated noise. Monthly Notices of the Royal Astronomical Society, 2019, 490, 947-961.	4.4	10
225	Constraints on non-resonant photon-axion conversion from the Planck satellite data. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 031-031.	5.4	10
226	Neural physical engines for inferring the halo mass distribution function. Monthly Notices of the Royal Astronomical Society, 2020, 494, 50-61.	4.4	10
227	Likelihood, Fisher information, and systematics of cosmic microwave background experiments. Astronomy and Astrophysics, 2012, 542, A60.	5.1	10
228	Probing local non-Gaussianities within a Bayesian framework. Astronomy and Astrophysics, 2010, 513, A59.	5.1	9
229	Single frequency CMB B-mode inference with realistic foregrounds from a single training image. Monthly Notices of the Royal Astronomical Society: Letters, 2021, 510, L1-L6.	3.3	9
230	Bayesian inference on the sphere beyond statistical isotropy. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 050-050.	5.4	8
231	Making maps of cosmological parameters. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 042-042.	5.4	8
232	Optimal and fast $\#$ mathcal $\{B\}$ separation with a dual messenger field. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2825-2834.	4.4	8
233	How to measure CMB spectral distortions with an imaging telescope. Physical Review D, 2019, 100, .	4.7	8
234	Neural Networks as Optimal Estimators to Marginalize Over Baryonic Effects. Astrophysical Journal, 2022, 928, 44.	4.5	8

#	Article	IF	CITATIONS
235	BAYESIAN ANALYSIS OF WHITE NOISE LEVELS IN THE FIVE-YEAR WMAP DATA. Astrophysical Journal, 2009, 702, L87-L90.	4.5	7
236	Perfectly parallel cosmological simulations using spatial comoving Lagrangian acceleration. Astronomy and Astrophysics, 2020, 639, A91.	5.1	7
237	Bayesian control variates for optimal covariance estimation with pairs of simulations and surrogates. Monthly Notices of the Royal Astronomical Society, 2022, 515, 1296-1315.	4.4	7
238	BAYESIAN INFERENCE OF POLARIZED COSMIC MICROWAVE BACKGROUND POWER SPECTRA FROM INTERFEROMETRIC DATA. Astrophysical Journal, Supplement Series, 2013, 204, 10.	7.7	6
239	A search for concentric rings with unusual variance in the 7-year WMAP temperature maps using a fast convolution approach. Monthly Notices of the Royal Astronomical Society, 2013, 429, 1376-1385.	4.4	6
240	The primordial non-Gaussianity of local type (flocalNL) in the WMAP 5-year data: the length distribution of CMB skeleton. Monthly Notices of the Royal Astronomical Society, 2010, 407, 2141-2156.	4.4	5
241	ARKCoS: artifact-suppressed accelerated radial kernel convolution on the sphere. Astronomy and Astrophysics, 2011, 532, A35.	5.1	5
242	Modeling cosmic void statistics. Proceedings of the International Astronomical Union, 2014, 11, 538-541.	0.0	5
243	Sparse inpainting and isotropy. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 050-050.	5.4	5
244	FSD: Frequency Space Differential measurement of CMB spectral distortions. Monthly Notices of the Royal Astronomical Society, 2018, 477, 4473-4482.	4.4	5
245	SSSpaNG! Stellar Spectra as Sparse, data-driven, Non-Gaussian processes. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	5
246	MAXIMUM LIKELIHOOD ANALYSIS OF SYSTEMATIC ERRORS IN INTERFEROMETRIC OBSERVATIONS OF THE COSMIC MICROWAVE BACKGROUND. Astrophysical Journal, Supplement Series, 2013, 206, 24.	7.7	4
247	SYSTEMATIC EFFECTS IN INTERFEROMETRIC OBSERVATIONS OF THE COSMIC MICROWAVE BACKGROUND POLARIZATION. Astrophysical Journal, Supplement Series, 2013, 207, 14.	7.7	4
248	Khatri and Wandelt Reply:. Physical Review Letters, 2010, 105, .	7.8	3
249	Life, the universe, and everything. Significance, 2014, 11, 48-75.	0.4	3
250	Linear perturbation theory of reionization in position space: Cosmological radiative transfer along the light cone. Physical Review D, 2015, 91, .	4.7	3
251	Primordial Nonâ€Gaussianity: Baryon Bias and Gravitational Collapse of Cosmic String Wakes. Astrophysical Journal, 1998, 503, 67-76.	4.5	2
252	O-V-S-Z AND FRIENDS: NON-GAUSSIANITY FROM INHOMOGENEOUS REIONIZATION. Astrophysical Journal, 2010, 711, 1310-1315.	4.5	2

#	Article	IF	CITATIONS
253	Publisher's Note: Temperature and polarization CMB maps from primordial non-Gaussianities of the local type [Phys. Rev. D 76 , 105016 (2007)]. Physical Review D, 2008, 77, .	4.7	1
254	Gaussian Random Fields in Cosmostatistics. , 2013, , 87-105.		1
255	Bayesian large-scale structure inference: initial conditions and the cosmic web. Proceedings of the International Astronomical Union, 2014, 10, 1-4.	0.0	1
256	Addendum: one-point remapping of Lagrangian perturbation theory in the mildly non-linear regime of cosmic structure formation. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 026-026.	5.4	1
257	Bayesian Cosmological inference beyond statistical isotropy. Journal of Physics: Conference Series, 2016, 759, 012062.	0.4	1
258	Advanced Methods for CMB Data Analysis: the Big N 3 and How to Beat It., 0,, 435-446.		1
259	Compressed convolution. Astronomy and Astrophysics, 2014, 561, A88.	5.1	1
260	The largest scale perturbations: A window on the physics of the beginning. New Astronomy Reviews, 2006, 50, 900-904.	12.8	0
261	Precision Parameter Estimation and Machine Learning. , 2008, , .		0
262	21 cm radiation: A new probe of fundamental physics. Proceedings of the International Astronomical Union, 2009, 5, 312-313.	0.0	0
263	Dark matter halo merger and accretion probabilities in the excursion set formalism. Monthly Notices of the Royal Astronomical Society, 2010, 409, 694-700.	4.4	0
264	Simulation of the analysis of interferometric microwave background polarization data. Proceedings of the International Astronomical Union, 2014, 10, 156-158.	0.0	0
265	Using hybrid GPU/CPU kernel splitting to accelerate spherical convolutions. Astronomy and Computing, 2015, 11, 18-24.	1.7	0
266	Halo detection via large-scale Bayesian inference. Monthly Notices of the Royal Astronomical Society, 2016, 460, 1340-1355.	4.4	0
267	Robust, Data-Driven Inference in Non-linear Cosmostatistics. Lecture Notes in Statistics, 2012, , 27-40.	0.2	0
268	Estimation of Moments on the Sphere by Means of Fast Convolution. Lecture Notes in Statistics, 2012, , 487-489.	0.2	0