List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5198142/publications.pdf Version: 2024-02-01

		41344	54911
122	7,791	49	84
papers	citations	h-index	g-index
133	133	133	8525
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Short-brush NiFeOxHy films and the Pt derivative as high-performance electrode materials for efficient electrocatalytic water splitting. Applied Surface Science, 2022, 574, 151636.	6.1	7
2	Dynamic structural evolution of iron catalysts involving competitive oxidation and carburization during CO ₂ hydrogenation. Science Advances, 2022, 8, eabm3629.	10.3	92
3	Engineering the Local Coordination Environment and Density of FeN ₄ Sites by Mn Cooperation for Electrocatalytic Oxygen Reduction. Small, 2022, 18, e2200911.	10.0	44
4	First-Principles Analysis of Ethylene Oligomerization on Single-Site Ga ³⁺ Catalysts Supported on Amorphous Silica. ACS Catalysis, 2022, 12, 5416-5424.	11.2	4
5	Tracing the Active Phase and Dynamics for Carbon Nanofiber Growth on Nickel Catalyst Using Environmental Transmission Electron Microscopy. Small Methods, 2022, 6, e2200235.	8.6	12
6	Boosting the Production of Higher Alcohols from CO ₂ and H ₂ over Mn- and K-Modified Iron Carbide. Industrial & Engineering Chemistry Research, 2022, 61, 7266-7274.	3.7	4
7	Promoting Propane Dehydrogenation with CO ₂ over the PtFe Bimetallic Catalyst by Eliminating the Non-selective Fe(0) Phase. ACS Catalysis, 2022, 12, 6559-6569.	11.2	26
8	Unraveling the tunable selectivity on cobalt oxide and metallic cobalt sites for CO2 hydrogenation. Chemical Engineering Journal, 2022, 446, 137217.	12.7	13
9	Reaction-Mediated Transformation of Working Catalysts. ACS Catalysis, 2022, 12, 8007-8018.	11.2	6
10	Boosting light olefin selectivity in CO2 hydrogenation by adding Co to Fe catalysts within close proximity. Catalysis Today, 2021, 371, 142-149.	4.4	43
11	Insight into the role of Fe5C2 in CO2 catalytic hydrogenation to hydrocarbons. Catalysis Today, 2021, 371, 162-170.	4.4	50
12	Enhanced performance and selectivity of CO2 methanation over phyllosilicate structure derived Ni-Mg/SBA-15 catalysts. Applied Catalysis B: Environmental, 2021, 282, 119564.	20.2	145
13	Reaction-driven surface reconstruction of ZnAl2O4 boosts the methanol selectivity in CO2 catalytic hydrogenation. Applied Catalysis B: Environmental, 2021, 284, 119700.	20.2	53
14	CO ₂ Hydrogenation to Methanol over In ₂ O ₃ -Based Catalysts: From Mechanism to Catalyst Development. ACS Catalysis, 2021, 11, 1406-1423.	11.2	198
15	Catalytic Conversion of Carbon Dioxide to Methanol: Current Status and Future Perspective. Frontiers in Energy Research, 2021, 8, .	2.3	36
16	Olefin oligomerization by main group Ga3+ and Zn2+ single site catalysts on SiO2. Nature Communications, 2021, 12, 2322.	12.8	26
17	Facile Preparation of Methyl Phenols from Ethanol over Lamellar Ce(OH)SO ₄ · <i>x</i> H ₂ O. ACS Catalysis, 2021, 11, 6162-6174.	11.2	9
18	Controlled synthesis of metal-organic frameworks with skeletal and pore-filling iron(III) porphyrins for electrochemical oxygen reduction. Journal of Porphyrins and Phthalocyanines, 2021, 25, 878-884.	0.8	0

#	Article	IF	CITATIONS
19	Impacts of nano-scale pore structure and organic amine assembly in porous silica on the kinetics of CO2 adsorptive separation. Nano Research, 2021, 14, 3294-3302.	10.4	10
20	Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting. Nature Communications, 2021, 12, 4587.	12.8	401
21	The Effect of Gold Nanoparticles on the Catalytic Activity of NiTiO3 for Hydrodeoxygenation of Guaiacol. Catalysts, 2021, 11, 994.	3.5	3
22	Structural Evolution of MOF-Derived RuCo, A General Catalyst for the Guerbet Reaction. ACS Applied Materials & Interfaces, 2021, , .	8.0	7
23	Engineering of g-C3N4-based photocatalysts to enhance hydrogen evolution. Advances in Colloid and Interface Science, 2021, 295, 102488.	14.7	52
24	Promoting propane dehydrogenation with CO2 over Ga2O3/SiO2 by eliminating Ga-hydrides. Chinese Journal of Catalysis, 2021, 42, 2225-2233.	14.0	13
25	CO2 Hydrogenation to Olefin-Rich Hydrocarbons Over Fe-Cu Bimetallic Catalysts: An Investigation of Fe-Cu Interaction and Surface Species. Frontiers in Chemical Engineering, 2021, 3, .	2.7	5
26	Facile Synthesis of Atomic Feâ€Nâ€C Materials and Dual Roles Investigation of Feâ€N ₄ Sites in Fentonâ€Like Reactions. Advanced Science, 2021, 8, e2101824.	11.2	118
27	Selfâ€Supporting 3D Carbon Nitride with Tunable n → Ï€* Electronic Transition for Enhanced Solar Hydrogen Production. Advanced Materials, 2021, 33, e2104361.	21.0	105
28	Structural and Catalytic Properties of Isolated Pt ²⁺ Sites in Platinum Phosphide (PtP ₂). ACS Catalysis, 2021, 11, 13496-13509.	11.2	15
29	Variation in the In ₂ O ₃ Crystal Phase Alters Catalytic Performance toward the Reverse Water Gas Shift Reaction. ACS Catalysis, 2020, 10, 3264-3273.	11.2	112
30	Intermetallic Compounds as an Alternative to Singleâ€atom Alloy Catalysts: Geometric and Electronic Structures from Advanced Xâ€ray Spectroscopies and Computational Studies. ChemCatChem, 2020, 12, 1325-1333.	3.7	50
31	Single-atom platinum confined by the interlayer nanospace of carbon nitride for efficient photocatalytic hydrogen evolution. Nano Energy, 2020, 69, 104409.	16.0	185
32	Toward Efficient Carbon and Water Cycles: Emerging Opportunities with Singleâ€ S ite Catalysts Made of 3d Transition Metals. Advanced Materials, 2020, 32, e1905548.	21.0	23
33	The effect of strong metal–support interaction (SMSI) on Pt–Ti/SiO2 and Pt–Nb/SiO2 catalysts for propane dehydrogenation. Catalysis Science and Technology, 2020, 10, 5973-5982.	4.1	19
34	Hierarchical 2D yarn-ball like metal–organic framework NiFe(dobpdc) as bifunctional electrocatalyst for efficient overall electrocatalytic water splitting. Journal of Materials Chemistry A, 2020, 8, 22974-22982.	10.3	43
35	Promoting effect of Fe on supported Ni catalysts in CO2 methanation by in situ DRIFTS and DFT study. Journal of Catalysis, 2020, 392, 266-277.	6.2	118
36	Pyrolysis-driven synthesis of nanoscale carambola-like carbon decorated with atomically dispersed Fe sites toward efficient oxygen reduction reaction. Catalysis Science and Technology, 2020, 10, 7160-7164.	4.1	13

#	Article	IF	CITATIONS
37	Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon. Nature Communications, 2020, 11, 2455.	12.8	265
38	Design and application of active sites in g-C3N4-based photocatalysts. Journal of Materials Science and Technology, 2020, 56, 69-88.	10.7	211
39	Deconvolution of the Particle Size Effect on CO ₂ Hydrogenation over Iron-Based Catalysts. ACS Catalysis, 2020, 10, 7424-7433.	11.2	108
40	Reversible loss of core–shell structure for Ni–Au bimetallic nanoparticles during CO2 hydrogenation. Nature Catalysis, 2020, 3, 411-417.	34.4	186
41	Gas-Phase Ethylene Polymerization by Single-Site Cr Centers in a Metal–Organic Framework. ACS Catalysis, 2020, 10, 3864-3870.	11.2	17
42	Uniform N-coordinated single-atomic iron sites dispersed in porous carbon framework to activate PMS for efficient BPA degradation via high-valent iron-oxo species. Chemical Engineering Journal, 2020, 389, 124382.	12.7	226
43	Enhanced kinetics for CO2 sorption in amine-functionalized mesoporous silica nanosphere with inverted cone-shaped pore structure. Applied Energy, 2020, 264, 114637.	10.1	47
44	A facile sulfur-assisted method to synthesize porous alveolate Fe/g-C3N4 catalysts with ultra-small cluster and atomically dispersed Fe sites. Chinese Journal of Catalysis, 2020, 41, 1198-1207.	14.0	37
45	Promotion of Pd nanoparticles by Fe and formation of a Pd3Fe intermetallic alloy for propane dehydrogenation. Catalysis Today, 2019, 323, 123-128.	4.4	42
46	Investigating Chemistry of Metal Dissolution in Amine–Thiol Mixtures and Exploiting It toward Benign Ink Formulation for Metal Chalcogenide Thin Films. Chemistry of Materials, 2019, 31, 5674-5682.	6.7	28
47	Bimetallic Iron–Cobalt Catalysts and Their Applications in Energy-Related Electrochemical Reactions. Catalysts, 2019, 9, 762.	3.5	16
48	Identification of the structure of the Bi promoted Pt non-oxidative coupling of methane catalyst: a nanoscale Pt ₃ Bi intermetallic alloy. Catalysis Science and Technology, 2019, 9, 1349-1356.	4.1	31
49	Identification of Surface Structures in Pt ₃ Cr Intermetallic Nanocatalysts. Chemistry of Materials, 2019, 31, 1597-1609.	6.7	46
50	Designing Highly Efficient and Longâ€īerm Durable Electrocatalyst for Oxygen Evolution by Coupling B and P into Amorphous Porous NiFeâ€Based Material. Small, 2019, 15, e1901020.	10.0	71
51	Diffusion-Limited Formation of Nonequilibrium Intermetallic Nanophase for Selective Dehydrogenation. Nano Letters, 2019, 19, 4380-4383.	9.1	10
52	Identification of a Pt ₃ Co Surface Intermetallic Alloy in Pt–Co Propane Dehydrogenation Catalysts. ACS Catalysis, 2019, 9, 5231-5244.	11.2	111
53	Modulating the Electronic Structure of Singleâ€Atom Catalysts on 2D Nanomaterials for Enhanced Electrocatalytic Performance. Small Methods, 2019, 3, 1800438.	8.6	88
54	Highly Selective Heterogeneous Ethylene Dimerization with a Scalable and Chemically Robust MOF Catalyst. ACS Sustainable Chemistry and Engineering, 2019, 7, 6654-6661.	6.7	62

#	Article	IF	CITATIONS
55	BEEF-vdW+ <i>U</i> method applied to perovskites: thermodynamic, structural, electronic, and magnetic properties. Journal of Physics Condensed Matter, 2019, 31, 145901.	1.8	11
56	Controllable assembly of single/double-thin-shell g-C ₃ N ₄ vesicles <i>via</i> a shape-selective solid-state templating method for efficient photocatalysis. Journal of Materials Chemistry A, 2019, 7, 17815-17822.	10.3	33
57	Overcoating the Surface of Fe-Based Catalyst with ZnO and Nitrogen-Doped Carbon toward High Selectivity of Light Olefins in CO ₂ Hydrogenation. Industrial & Engineering Chemistry Research, 2019, 58, 4017-4023.	3.7	35
58	CO ₂ Hydrogenation on Unpromoted and M-Promoted Co/TiO ₂ Catalysts (M =) Tj ETQq Distribution. ACS Catalysis, 2019, 9, 2739-2751.	0 0 0 rgB ⁻ 11.2	[/Overlock] 130
59	Utilization of CO2 for aromatics production over ZnO/ZrO2-ZSM-5 tandem catalyst. Journal of CO2 Utilization, 2019, 29, 140-145.	6.8	96
60	Stabilized Vanadium Catalyst for Olefin Polymerization by Site Isolation in a Metal–Organic Framework. Angewandte Chemie - International Edition, 2018, 57, 8135-8139.	13.8	73
61	Stabilized Vanadium Catalyst for Olefin Polymerization by Site Isolation in a Metal–Organic Framework. Angewandte Chemie, 2018, 130, 8267-8271.	2.0	6
62	Silverâ€Catalyzed Decarboxylative Couplings of Acids and Anhydrides: An Entry to 1,2â€Diketones and Arylâ€Substituted Ethanes. Advanced Synthesis and Catalysis, 2018, 360, 1439-1443.	4.3	23
63	Tetrahedral Nickel(II) Phosphosilicate Singleâ€5ite Selective Propane Dehydrogenation Catalyst. ChemCatChem, 2018, 10, 961-964.	3.7	31
64	High-Performance Transition Metal Phosphide Alloy Catalyst for Oxygen Evolution Reaction. ACS Nano, 2018, 12, 158-167.	14.6	321
65	Strong Electronic Coupling of Molecular Sites to Graphitic Electrodes via Pyrazine Conjugation. Journal of the American Chemical Society, 2018, 140, 1004-1010.	13.7	111
66	Molybdenum-Incorporated Mesoporous Silica: Surface Engineering toward Enhanced Metal–Support Interactions and Efficient Hydrogenation. ACS Applied Materials & Interfaces, 2018, 10, 42475-42483.	8.0	17
67	3D self-supported Ni(PO ₃) ₂ –MoO ₃ nanorods anchored on nickel foam for highly efficient overall water splitting. Nanoscale, 2018, 10, 22173-22179.	5.6	50
68	Deconvolution of octahedral Pt3Ni nanoparticle growth pathway from in situ characterizations. Nature Communications, 2018, 9, 4485.	12.8	37
69	A Structural Mimic of Carbonic Anhydrase in a Metal-Organic Framework. CheM, 2018, 4, 2894-2901.	11.7	91
70	Changes in Catalytic and Adsorptive Properties of 2 nm Pt ₃ Mn Nanoparticles by Subsurface Atoms. Journal of the American Chemical Society, 2018, 140, 14870-14877.	13.7	121
71	Evidence for the Coordination–Insertion Mechanism of Ethene Dimerization at Nickel Cations Exchanged onto Beta Molecular Sieves. ACS Catalysis, 2018, 8, 11407-11422.	11.2	66
72	High-Density Ultra-small Clusters and Single-Atom Fe Sites Embedded in Graphitic Carbon Nitride (g-C ₃ N ₄) for Highly Efficient Catalytic Advanced Oxidation Processes. ACS Nano, 2018, 12, 9441-9450.	14.6	455

#	Article	IF	CITATIONS
73	Structure Determination of a Surface Tetragonal Pt ₁ Sb ₁ Phase on Pt Nanoparticles. Chemistry of Materials, 2018, 30, 4503-4507.	6.7	26
74	Mechanism of Me–Re Bond Addition to Platinum(II) and Dioxygen Activation by the Resulting Pt–Re Bimetallic Center. Inorganic Chemistry, 2017, 56, 2145-2152.	4.0	10
75	Selective Dimerization of Propylene with Ni-MFU-4 <i>l</i> . Organometallics, 2017, 36, 1681-1683.	2.3	55
76	The Nature of the Isolated Gallium Active Center for Propane Dehydrogenation on Ga/SiO2. Catalysis Letters, 2017, 147, 1252-1262.	2.6	54
77	Bond breakage under pressure in a metal organic framework. Chemical Science, 2017, 8, 8004-8011.	7.4	77
78	Supported Single-Site Ti(IV) on a Metal–Organic Framework for the Hydroboration of Carbonyl Compounds. Organometallics, 2017, 36, 3921-3930.	2.3	50
79	Highly Stereoselective Heterogeneous Diene Polymerization by Co-MFU-4I: A Single-Site Catalyst Prepared by Cation Exchange. Journal of the American Chemical Society, 2017, 139, 12664-12669.	13.7	63
80	Organometallic model complexes elucidate the active gallium species in alkane dehydrogenation catalysts based on ligand effects in Ga K-edge XANES. Catalysis Science and Technology, 2016, 6, 6339-6353.	4.1	90
81	Homolytic cleavage of the O–Cu(<scp>ii</scp>) bond: XAFS and EPR spectroscopy evidence for one electron reduction of Cu(<scp>ii</scp>) to Cu(<scp>i</scp>). Chemical Communications, 2016, 52, 6914-6917.	4.1	25
82	Aromatic C–H bond cleavage by using a Cu(i) ate-complex. Organic Chemistry Frontiers, 2016, 3, 975-978.	4.5	6
83	Transition metal-free decarboxylative alkylation reactions. Organic and Biomolecular Chemistry, 2016, 14, 10763-10777.	2.8	74
84	Direct difunctionalization of activated alkynes via domino oxidative benzylation/1,4-aryl migration/decarboxylation reactions under metal-free conditions. Chemical Communications, 2016, 52, 3175-3178.	4.1	34
85	Evidence of Cu ^I /Cu ^{II} Redox Process by Xâ€ray Absorption and EPR Spectroscopy: Direct Synthesis of Dihydrofurans from βâ€Ketocarbonyl Derivatives and Olefins. Chemistry - A European Journal, 2015, 21, 18925-18929.	3.3	35
86	Corrigendum to "Enhancing the stability of copper chromite catalysts for the selective hydrogenation of furfural using ALD overcoating―[J. Catal. 317 (2014) 284–292]. Journal of Catalysis, 2015, 323, 165.	6.2	1
87	Conversion of Dimethyl Ether to 2,2,3-Trimethylbutane over a Cu/BEA Catalyst: Role of Cu Sites in Hydrogen Incorporation. ACS Catalysis, 2015, 5, 1794-1803.	11.2	37
88	Synthesis and Catalytic Hydrogenation Reactivity of a Chromium Catecholate Porous Organic Polymer. Organometallics, 2015, 34, 947-952.	2.3	27
89	Compression-Induced Deformation of Individual Metal–Organic Framework Microcrystals. Journal of the American Chemical Society, 2015, 137, 1750-1753.	13.7	66
90	Operando X-ray absorption and EPR evidence for a single electron redox process in copper catalysis. Chemical Science, 2015, 6, 4851-4854.	7.4	65

#	Article	IF	CITATIONS
91	Copper-/Cobalt-Catalyzed Highly Selective Radical Dioxygenation of Alkenes. Organic Letters, 2015, 17, 3402-3405.	4.6	50
92	Isolated Fe ^{II} on Silica As a Selective Propane Dehydrogenation Catalyst. ACS Catalysis, 2015, 5, 3494-3503.	11.2	144
93	Single-Site Palladium(II) Catalyst for Oxidative Heck Reaction: Catalytic Performance and Kinetic Investigations. ACS Catalysis, 2015, 5, 3752-3759.	11.2	66
94	Dinuclear versus mononuclear pathways in zinc mediated nucleophilic addition: a combined experimental and DFT study. Dalton Transactions, 2015, 44, 11165-11171.	3.3	26
95	Benzene Selectivity in Competitive Arene Hydrogenation: Effects of Single-Site Catalyst··Acidic Oxide Surface Binding Geometry. Journal of the American Chemical Society, 2015, 137, 6770-6780.	13.7	76
96	Which one is faster? A kinetic investigation of Pd and Ni catalyzed Negishi-type oxidative coupling reactions. Dalton Transactions, 2015, 44, 19777-19781.	3.3	4
97	Effect of Siloxane Ring Strain and Cation Charge Density on the Formation of Coordinately Unsaturated Metal Sites on Silica: Insights from Density Functional Theory (DFT) Studies. ACS Catalysis, 2015, 5, 7177-7185.	11.2	38
98	Gas-Phase Dimerization of Ethylene under Mild Conditions Catalyzed by MOF Materials Containing (bpy)Ni ^{II} Complexes. ACS Catalysis, 2015, 5, 6713-6718.	11.2	127
99	Copper-catalyzed aerobic oxidative coupling: From ketone and diamine to pyrazine. Science Advances, 2015, 1, e1500656.	10.3	24
100	Bimetallic zinc complex – active species in coupling of terminal alkynes with aldehydes via nucleophilic addition/Oppenauer oxidation. Chemical Communications, 2015, 51, 576-579.	4.1	39
101	Revealing the halide effect on the kinetics of the aerobic oxidation of Cu(<scp>i</scp>) to Cu(<scp>ii</scp>). Chemical Communications, 2015, 51, 318-321.	4.1	21
102	Palladium atalyzed Oxidative Carbonylation of <i>N</i> â€Allylamines for the Synthesis of Î²â€Łactams. Angewandte Chemie - International Edition, 2014, 53, 2443-2446.	13.8	133
103	Direct Observation of Reduction of Cu(II) to Cu(I) by Terminal Alkynes. Journal of the American Chemical Society, 2014, 136, 924-926.	13.7	136
104	Cu(II)–Cu(I) Synergistic Cooperation to Lead the Alkyne C–H Activation. Journal of the American Chemical Society, 2014, 136, 16760-16763.	13.7	97
105	Copper-catalyzed oxidative ipso-carboalkylation of activated alkynes with ethers leading to 3-etherified azaspiro[4.5]trienones. Organic Chemistry Frontiers, 2014, 1, 484.	4.5	126
106	Structure–kinetic relationship study of organozinc reagents. Chemical Communications, 2014, 50, 8709.	4.1	19
107	Assignment of the oxidation states of Zr and Co in a highly reactive heterobimetallic Zr/Co complex using X-ray absorption spectroscopy (XANES). Dalton Transactions, 2014, 43, 13852.	3.3	29
108	Discovery of Highly Selective Alkyne Semihydrogenation Catalysts Based on Firstâ€Row Transitionâ€Metallated Porous Organic Polymers. Angewandte Chemie - International Edition, 2014, 53, 12055-12058.	13.8	51

#	Article	IF	CITATIONS
109	Enhancing the stability of copper chromite catalysts for the selective hydrogenation of furfural using ALD overcoating. Journal of Catalysis, 2014, 317, 284-292.	6.2	65
110	Rhodium Catechol Containing Porous Organic Polymers: Defined Catalysis for Single-Site and Supported Nanoparticulate Materials. Organometallics, 2014, 33, 2517-2522.	2.3	22
111	Trifluoromethanesulfonic Acid Catalyzed Synergetic Oxidative/[3+2] Cyclization of Quinones with Olefins. Angewandte Chemie - International Edition, 2013, 52, 10195-10198.	13.8	31
112	In Situ Xâ€ray Absorption Spectroscopy and Nonclassical Catalytic Hydrogenation with an Iron(II) Catecholate Immobilized on a Porous Organic Polymer. European Journal of Inorganic Chemistry, 2013, 2013, 3972-3977.	2.0	7
113	Labile Cu(I) Catalyst/Spectator Cu(II) Species in Copper-Catalyzed C–C Coupling Reaction: Operando IR, in Situ XANES/EXAFS Evidence and Kinetic Investigations. Journal of the American Chemical Society, 2013, 135, 488-493.	13.7	78
114	Trifluoromethanesulfonic Acid Catalyzed Synergetic Oxidative/[3+2] Cyclization of Quinones with Olefins. Angewandte Chemie, 2013, 125, 10385-10388.	2.0	9
115	Impact of substituents in the Nâ^§N ligand on the emission wavelength of Cu(I) complexes: Insight from experimental and theoretical approach. Journal of Luminescence, 2010, 130, 976-980.	3.1	5
116	Highly efficient organic light-emitting diodes (OLEDs) based on an iridium complex with rigid cyclometalated ligand. Organic Electronics, 2010, 11, 632-640.	2.6	14
117	Highly efficient white organic light-emitting diodes based on broad excimer emission of iridium complex. Organic Electronics, 2010, 11, 1165-1171.	2.6	19
118	Iridium(III) complexes with cyclometalated styrylbenzoimidazole ligands: Synthesis, electrochemistry and as highly efficient emitters for organic light-emitting diodes. Synthetic Metals, 2010, 160, 1906-1911.	3.9	23
119	High-efficient phosphorescent iridium(III) complexes with benzimidazole ligand for organic light-emitting diodes: Synthesis, electrochemistry and electroluminescent properties. Journal of Organometallic Chemistry, 2009, 694, 2415-2420.	1.8	16
120	Synthesis of a highly phosphorescent emitting iridium(III) complex and its application in OLEDs. Journal of Organometallic Chemistry, 2008, 693, 2798-2802.	1.8	17
121	Synthesis and properties of iridium complexes based 1,3,4-oxadiazoles derivatives. Tetrahedron, 2008, 64, 1860-1867.	1.9	65
122	Synthesis and luminescent properties of Ir complexes with fluorine substituted phenylpyridine derivative ligands. Synthetic Metals, 2008, 158, 912-916.	3.9	3