
Kimberly A Stieglitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/519801/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crystal Structure of a Dual Activity IMPase/FBPase (AF2372) from Archaeoglobus fulgidus. Journal of Biological Chemistry, 2002, 277, 22863-22874.	3.4	48
2	Metal Specificity Is Correlated with Two Crucial Active Site Residues in Escherichia coli Alkaline Phosphatase,. Biochemistry, 2005, 44, 8378-8386.	2.5	47
3	Structural basis for ordered substrate binding and cooperativity in aspartate transcarbamoylase. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8881-8886.	7.1	46
4	Reaching for Mechanistic Consensus Across Life Kingdoms:Â Structure and Insights into Catalysis of themyo-Inositol-1-phosphate Synthase (mIPS) fromArchaeoglobus fulgidusâ€,‡. Biochemistry, 2005, 44, 213-224.	2.5	33
5	Novel Heteroaromatic Organofluorine Inhibitors of Fructose-1,6-bisphosphatase. Journal of Medicinal Chemistry, 2009, 52, 878-882.	6.4	24
6	Crystal structure of the tetrameric inositol 1-phosphate phosphatase (TM1415) from the hyperthermophile, Thermotoga maritima. FEBS Journal, 2007, 274, 2461-2469.	4.7	23
7	Rational Design, Synthesis, and Potency of N‣ubstituted Indoles, Pyrroles, and Triarylpyrazoles as Potential Fructose 1,6â€Bisphosphatase Inhibitors. ChemMedChem, 2010, 5, 384-389.	3.2	23
8	Binding of Proteolytically Processed Phospholipase D from Streptomyces chromofuscus to Phosphatidylcholine Membranes Facilitates Vesicle Aggregation and Fusion. Biochemistry, 2001, 40, 13954-13963.	2.5	21
9	The Structure of the R184A Mutant of the Inositol Monophosphatase Encoded by suhB and Implications for Its Functional Interactions in Escherichia coli. Journal of Biological Chemistry, 2007, 282, 26989-26996.	3.4	20
10	Mobile loop mutations in an archaeal inositol monophosphatase: Modulating threeâ€metal ion assisted catalysis and lithium inhibition. Protein Science, 2010, 19, 309-318.	7.6	15
11	1,3â€Disubstitutedâ€4â€Aminopyrazolo [3, 4â€d] Pyrimidines, a New Class of Potent Inhibitors for Phospholipase <scp>D</scp> . Chemical Biology and Drug Design, 2014, 84, 270-281.	3.2	14
12	T-state Inhibitors ofE. coliAspartate Transcarbamoylase that Prevent the Allosteric Transitionâ€,‡. Biochemistry, 2006, 45, 10062-10071.	2.5	11
13	Structure of the E.coli Aspartate Transcarbamoylase Trapped in the Middle of the Catalytic Cycle. Journal of Molecular Biology, 2005, 352, 478-486.	4.2	10
14	Structural Insights for Drugs Developed for Phospholipase D Enzymes. Current Drug Discovery Technologies, 2018, 15, 81-93.	1.2	9
15	Unexpected similarity in regulation between an archaeal inositol monophosphatase/fructose bisphosphatase and chloroplast fructose bisphosphatase. Protein Science, 2003, 12, 760-767.	7.6	8
16	A Single Amino Acid Substitution in the Active Site of Escherichia coli Aspartate Transcarbamoylase Prevents the Allosteric Transition. Journal of Molecular Biology, 2005, 349, 413-423.	4.2	8
17	The first high pH structure of <i>Escherichia coli</i> aspartate transcarbamoylase. Proteins: Structure, Function and Bioinformatics, 2009, 74, 318-327.	2.6	8
18	240s Loop Interactions Stabilize the T State of Escherichia coli Aspartate Transcarbamoylase. Journal of Biological Chemistry, 2004, 279, 23302-23310.	3.4	4

#	Article	IF	CITATIONS
19	Characterization of recombinant fructose-1,6-bisphosphatase gene mutations: evidence of inhibition/activation of FBPase protein by gene mutation. Bioscience Reports, 2019, 39, .	2.4	4
20	Not so clear on oxygen. Comment on <i>Structural basis for cofactor-independent dioxygenation in vancomycin biosynthesis</i> by Widboom <i>et al.</i> (2007), <i>Nature (London)</i> , 447 , 342–345. Acta Crystallographica Section D: Biological Crystallography, 2008, 64, 1000-1002.	2.5	3
21	Identifying New Drug Targets for Potent Phospholipase D Inhibitors: Combining Sequence Alignment, Molecular Docking, and Enzyme Activity/Binding Assays. Chemical Biology and Drug Design, 2016, 87, 714-729.	3.2	2
22	Structural Analysis of Relevant Drug Targets for Alzheimer';s Disease: Novel Approaches to Drug Development. Current Bioactive Compounds, 2017, 13, 90-100.	0.5	2
23	Comparison of two T-state structures of regulatory-chain mutants ofEscherichia coliaspartate transcarbamoylase suggests that His20 and Asp19 modulate the response to heterotropic effectors. Acta Crystallographica Section D: Biological Crystallography, 2007, 63, 1243-1253.	2.5	1
24	The Role of Phospholipase D Enzyme(s) in Modulating Cell Signaling: Implications for Cancer Drug Development. Current Bioactive Compounds, 2014, 10, 124-130.	0.5	0