Atsushi Nishikawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5197312/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigation of optical gain in Eu-doped GaN thin film grown by OMVPE method. Journal of Science: Advanced Materials and Devices, 2016, 1, 220-223.	3.1	7
2	In situ Eu doping into Al Ga1â^'N grown by organometallic vapor phase epitaxy to improve luminescence properties. Optical Materials, 2015, 41, 75-79.	3.6	8
3	Excellent uniformity on large diameter GaN on silicon LED wafer. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 624-627.	0.8	5
4	GaN-on-Si wafers for HEMTs with high power-driving capability. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 945-948.	0.8	5
5	Defect roles in the excitation of Eu ions in Eu:GaN. Optics Express, 2013, 21, 30633.	3.4	9
6	Highly Uniform Electroluminescence from 150 and 200 mm GaN-on-Si-Based Blue Light-Emitting Diode Wafers. Applied Physics Express, 2013, 6, 095502.	2.4	7
7	200-mm GaN-on-Si Based Blue Light-Emitting Diode Wafer with High Emission Uniformity. Japanese Journal of Applied Physics, 2013, 52, 08JB25.	1.5	9
8	Dislocation generation in GaN by dicing process. Journal of Physics: Conference Series, 2013, 417, 012055.	0.4	1
9	Advanced Materials Design of Rare-Earth-Doped Semiconductors by Organometallic Vapor Phase Epitaxy. , 2013, , 261-272.		0
10	Eu luminescence center created by Mg codoping in Eu-doped GaN. Applied Physics Letters, 2012, 100, .	3.3	50
11	Fluorescence XAFS Analysis of Eu-Doped GaN Layers Grown by Organometallic Vapor Phase Epitaxy. E-Journal of Surface Science and Nanotechnology, 2011, 9, 51-53.	0.4	6
12	Atmospheric pressure growth of Euâ€doped GaN by organometallic vapor phase epitaxy. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 445-448.	1.8	10
13	Site and sample dependent electron–phonon coupling of Eu ions in epitaxial-grown GaN layers. Optical Materials, 2011, 33, 1050-1054.	3.6	48
14	Room-temperature red emission from light-emitting diodes with Eu-doped GaN grown by organometallic vapor phase epitaxy. Optical Materials, 2011, 33, 1071-1074.	3.6	23
15	Site Selective Magneto-Optical Studies of Eu ions in Gallium Nitride. Materials Research Society Symposia Proceedings, 2011, 1342, 93.	0.1	3
16	Electroluminescence Properties of Eu-doped GaN-based Light-emitting Diodes Grown by Organometallic Vapor Phase Epitaxy. Materials Research Society Symposia Proceedings, 2011, 1342, 27.	0.1	15
17	Nature and Excitation Mechanism of the Emission-dominating Minority Eu-center in GaN Grown by Organometallic Vapor-phase Epitaxy. Materials Research Society Symposia Proceedings, 2011, 1342, 67.	0.1	4
18	Electroluminescence properties of Eu-doped GaN-based red light-emitting diode by OMVPE. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1397-1399.	1.8	19

Atsushi Nishikawa

#	Article	IF	CITATIONS
19	Effect of growth temperature on Eu-doped GaN layers grown by organometallic vapor phase epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2040-2042.	0.8	12
20	Lattice site location of optical centers in GaN:Eu light emitting diode material grown by organometallic vapor phase epitaxy. Applied Physics Letters, 2010, 97, 111911.	3.3	29
21	Improved Eu Luminescence Properties in Eu-Doped GaN Grown on GaN Substrates by Organometallic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 2010, 49, 048001.	1.5	2
22	Growth Temperature Dependence of Eu-Doped GaN Grown by Organometallic Vapor Phase Epitaxy. Zairyo/Journal of the Society of Materials Science, Japan, 2010, 59, 671-674.	0.2	0
23	Efficient luminescence from rare-earth elements by nitride-based nano-particle. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2010, 18, 38-44.	0.0	Ο
24	Low-temperature characteristics of the current gain of GaN/InGaN double-heterojunction bipolar transistors. Journal of Crystal Growth, 2009, 311, 3000-3002.	1.5	2
25	Development of new-type 1.5 μ4m light-emitting devices based on Er,O-codoped GaAs. Journal of Physics: Conference Series, 2009, 165, 012025.	0.4	2
26	High-temperature (300 °C) operation ofnpn-type GaN/InGaN double heterojunction bipolar transistors. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 2957-2959.	0.8	1
27	High-Temperature Characteristics of Al _x Ga _{1-x} N-Based Vertical Conducting Diodes. Japanese Journal of Applied Physics, 2008, 47, 2838.	1.5	2
28	Temperature dependence of current-voltage characteristics of npn-type GaNâ^•InGaN double heterojunction bipolar transistors. Applied Physics Letters, 2007, 91, 133514.	3.3	7
29	High Critical Electric Field Exceeding 8 MV/cm Measured Using an AlGaNp–i–nVertical Conducting Diode onn-SiC Substrate. Japanese Journal of Applied Physics, 2007, 46, 2316-2319.	1.5	32
30	Low-resistance graded AlxGa1â^'xN buffer layers for vertical conducting devices on n-SiC substrates. Journal of Crystal Growth, 2007, 298, 819-821.	1.5	2
31	Low on-resistance of GaNp-i-n vertical conducting diodes grown on 4H-SiC substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 2662-2665.	0.8	4
32	High breakdown field of pnp GaN/InGaN/AlGaN DHBTs with AlGaN collector. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 2037-2041.	1.8	3
33	Growth and optical characterization of InAsN quantum dots. Physica Status Solidi (B): Basic Research, 2006, 243, 1657-1660.	1.5	11
34	Critical electric fields of AlGaN in AlGaN-based vertical conducting diodes on -SiC substrates. Superlattices and Microstructures, 2006, 40, 332-337.	3.1	9
35	p-InGaN/n-GaN Vertical Conducting Diodes onn+-SiC Substrate for High Power Electronic Device Applications. Japanese Journal of Applied Physics, 2006, 45, 3387-3390.	1.5	2
36	High critical electric field of AlxGa1â^'xN p-i-n vertical conducting diodes on n-SiC substrates. Applied Physics Letters, 2006, 88, 173508.	3.3	29

Atsushi Nishikawa

#	Article	IF	CITATIONS
37	High breakdown voltage with low on-state resistance of p-InGaNâ^•n-GaN vertical conducting diodes on n-GaN substrates. Applied Physics Letters, 2006, 89, 153509.	3.3	4
38	Excitation power dependent photoluminescence of In0.7Ga0.3As1â^'xNx quantum dots grown on GaAs (001). Journal of Crystal Growth, 2005, 278, 244-248.	1.5	7
39	Growth and characterization of InAsN alloy films and quantum wells. Journal of Crystal Growth, 2005, 278, 254-258.	1.5	33
40	Current-voltage characteristics of pâ€InGaNâ^•nâ€GaN vertical conducting diodes on n+â€5iC substrates. Applied Physics Letters, 2005, 87, 233505.	3.3	11
41	MBE growth and photoreflectance study of GaAsN alloy films grown on GaAs (001). Journal of Crystal Growth, 2003, 251, 427-431.	1.5	23
42	RF-MBE growth of InAsN layers on GaAs (001) substrates using a thick InAs buffer layer. Journal of Crystal Growth, 2003, 251, 422-426.	1.5	12
43	The effect of nitrogen on self-assembled GaInNAs quantum dots grown on GaAs. Physica Status Solidi (B): Basic Research, 2003, 240, 310-313.	1.5	9
44	Effect of nitrogen on the optical and transport properties of Ga0.48In0.52NyP1â^'y grown on GaAs(001) substrates. Applied Physics Letters, 2003, 83, 5446-5448.	3.3	32
45	Room-Temperature Red Emission from a p-Type/Europium-Doped/n-Type Gallium Nitride Light-Emitting Diode under Current Injection. Applied Physics Express, 0, 2, 071004.	2.4	183