Michael Wiese

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5196635/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison of the Usefulness of the MTT, ATP, and Calcein Assays to Predict the Potency of Cytotoxic Agents in Various Human Cancer Cell Lines. Journal of Biomolecular Screening, 2004, 9, 506-515.	2.6	189
2	Structure–activity relationships of flavonoids as inhibitors of breast cancer resistance protein (BCRP). Bioorganic and Medicinal Chemistry, 2011, 19, 2090-2102.	3.0	169
3	Investigation of chalcones and benzochalcones as inhibitors of breast cancer resistance protein. Bioorganic and Medicinal Chemistry, 2012, 20, 346-355.	3.0	97
4	Combined Pharmacophore Modeling, Docking, and 3D QSAR Studies of ABCB1 and ABCC1 Transporter Inhibitors. ChemMedChem, 2009, 4, 1883-1896.	3.2	89
5	Investigation of quinazolines as inhibitors of breast cancer resistance protein (ABCG2). Bioorganic and Medicinal Chemistry, 2013, 21, 7858-7873.	3.0	84
6	Synthesis and biological evaluation of flavones and benzoflavones as inhibitors of BCRP/ABCG2. European Journal of Medicinal Chemistry, 2013, 67, 115-126.	5.5	83
7	Structure–activity relationships of new inhibitors of breast cancer resistance protein (ABCG2). Bioorganic and Medicinal Chemistry, 2008, 16, 8224-8236.	3.0	82
8	Design, synthesis and biological evaluation of thiosemicarbazones, hydrazinobenzothiazoles and arylhydrazones as anticancer agents with a potential to overcome multidrug resistance. European Journal of Medicinal Chemistry, 2016, 117, 335-354.	5.5	79
9	Specific Inhibitors of the Breast Cancer Resistance Protein (BCRP). ChemMedChem, 2010, 5, 1498-1505.	3.2	73
10	Tyrosine Kinase Inhibitors Influence ABCG2 Expression in EGFRâ€Positive MDCK BCRP Cells via the PI3K/Akt Signaling Pathway. ChemMedChem, 2012, 7, 650-662.	3.2	71
11	Identification of Putative Binding Sites of Pâ€glycoprotein Based on its Homology Model. ChemMedChem, 2008, 3, 280-295.	3.2	70
12	HM30181 Derivatives as Novel Potent and Selective Inhibitors of the Breast Cancer Resistance Protein (BCRP/ABCG2). Journal of Medicinal Chemistry, 2015, 58, 3910-3921.	6.4	69
13	In vitro andin vivo evaluation of WK-X-34, a novel inhibitor of P-glycoprotein and BCRP, using radio imaging techniques. International Journal of Cancer, 2006, 119, 414-422.	5.1	67
14	New functional assay of P-glycoprotein activity using Hoechst 33342. Bioorganic and Medicinal Chemistry, 2007, 15, 7470-7479.	3.0	60
15	Functional assay and structure–activity relationships of new third-generation P-glycoprotein inhibitors. Bioorganic and Medicinal Chemistry, 2008, 16, 2448-2462.	3.0	60
16	Synthesis and Investigation of Tetrahydro-β-carboline Derivatives as Inhibitors of the Breast Cancer Resistance Protein (ABCG2). Journal of Medicinal Chemistry, 2016, 59, 6121-6135.	6.4	57
17	4-Substituted-2-phenylquinazolines as inhibitors of BCRP. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 6766-6769.	2.2	54
18	The combination of quinazoline and chalcone moieties leads to novel potent heterodimeric modulators of breast cancer resistance protein (BCRP/ABCG2). European Journal of Medicinal Chemistry, 2016, 117, 212-229.	5.5	52

#	Article	IF	CITATIONS
19	9-Deazapurines as Broad-Spectrum Inhibitors of the ABC Transport Proteins P-Glycoprotein, Multidrug Resistance-Associated Protein 1, and Breast Cancer Resistance Protein. Journal of Medicinal Chemistry, 2017, 60, 8758-8780.	6.4	52
20	Synthesis and Biological Evaluation of 4-Anilino-quinazolines and -quinolines as Inhibitors of Breast Cancer Resistance Protein (ABCG2). Journal of Medicinal Chemistry, 2016, 59, 5449-5461.	6.4	51
21	Synthesis and biological evaluation of a small molecule library of 3rd generation multidrug resistance modulators. Bioorganic and Medicinal Chemistry, 2009, 17, 2524-2535.	3.0	50
22	Smallâ€molecule inhibitors of multidrug resistanceâ€associated protein 1 and related processes: A historic approach and recent advances. Medicinal Research Reviews, 2019, 39, 176-264.	10.5	50
23	Total Synthesis of Natural and Non-Natural Δ ^{5,6} Δ ^{12,13} -Jatrophane Diterpenes and Their Evaluation as MDR Modulators. Journal of Organic Chemistry, 2011, 76, 512-522.	3.2	49
24	Structure–activity relationships of a series of tariquidar analogs as multidrug resistance modulators. Bioorganic and Medicinal Chemistry, 2006, 14, 1588-1598.	3.0	47
25	Pyrrolopyrimidine Derivatives as Novel Inhibitors of Multidrug Resistance-Associated Protein 1 (MRP1,) Tj ETQq1	1 0.7843 6.4	l4 rgBT /Ονε 44
26	4-Anilino-2-pyridylquinazolines and -pyrimidines as Highly Potent and Nontoxic Inhibitors of Breast Cancer Resistance Protein (ABCG2). Journal of Medicinal Chemistry, 2017, 60, 4474-4495.	6.4	43
27	Novel chalcone and flavone derivatives as selective and dual inhibitors of the transport proteins ABCB1 and ABCG2. European Journal of Medicinal Chemistry, 2019, 164, 193-213.	5.5	39
28	Synthesis and biological investigation of 2,4-substituted quinazolines as highly potent inhibitors of breast cancer resistance protein (ABCG2). European Journal of Medicinal Chemistry, 2017, 139, 587-611.	5.5	38
29	2,4,6-Substituted Quinazolines with Extraordinary Inhibitory Potency toward ABCC2. Journal of Medicinal Chemistry, 2018, 61, 7952-7976.	6.4	37
30	Protein Contacts and Ligand Binding in the Inwardâ€Facing Model of Human Pâ€Glycoprotein. ChemMedChem, 2013, 8, 748-762.	3.2	35
31	New Inhibitors of Breast Cancer Resistance Protein (ABCG2) Containing a 2,4-Disubstituted Pyridopyrimidine Scaffold. Journal of Medicinal Chemistry, 2018, 61, 3389-3408.	6.4	35
32	Activators of Pâ€glycoprotein: Structure–Activity Relationships and Investigation of their Mode of Action. ChemMedChem, 2009, 4, 1897-1911.	3.2	33
33	Structure–Activity Relationships of Tariquidar Analogs as Multidrug Resistance Modulators. AAPS Journal, 2009, 11, 435-44.	4.4	32
34	Synthesis and Quantitative Structure–Activity Relationships of Selective BCRP Inhibitors. ChemMedChem, 2013, 8, 125-135.	3.2	30
35	Characterization of 3-methoxy flavones for their interaction with ABCG2 as suggested by ATPase activity. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2929-2938.	2.6	30
36	Molecular Recognition of Agonists and Antagonists by the Nucleotide-Activated G Protein-Coupled P2Y ₂ Receptor. Journal of Medicinal Chemistry, 2017, 60, 8425-8440.	6.4	27

#	Article	IF	CITATIONS
37	Synthesis and biological evaluation of quinazoline derivatives – A SAR study of novel inhibitors of ABCG2. European Journal of Medicinal Chemistry, 2019, 161, 506-525.	5.5	27
38	Novel lead for potent inhibitors of breast cancer resistance protein (BCRP). Bioorganic and Medicinal Chemistry Letters, 2010, 20, 180-183.	2.2	25
39	Interactions of the Multidrug Resistance Modulators Tariquidar and Elacridar and their Analogues with $P\hat{a}\in g$ lycoprotein. ChemMedChem, 2013, 8, 1701-1713.	3.2	25
40	Scaffold Identification of a New Class of Potent and Selective BCRP Inhibitors. ChemMedChem, 2015, 10, 742-751.	3.2	25
41	Synthesis and characterization of the anticancer and metal binding properties of novel pyrimidinylhydrazone derivatives. Journal of Inorganic Biochemistry, 2015, 144, 18-30.	3.5	25
42	Aromatic 2-(Thio)ureidocarboxylic Acids As a New Family of Modulators of Multidrug Resistance-Associated Protein 1: Synthesis, Biological Evaluation, and Structureâ^'Activity Relationships. Journal of Medicinal Chemistry, 2009, 52, 4586-4595.	6.4	24
43	Identification of Thienopyrimidine Scaffold as an Inhibitor of the ABC Transport Protein ABCC1 (MRP1) and Related Transporters Using a Combined Virtual Screening Approach. Journal of Medicinal Chemistry, 2019, 62, 4383-4400.	6.4	24
44	The Aâ€Bâ€C of smallâ€molecule ABC transport protein modulators: From inhibition to activation—a case study of multidrug resistanceâ€associated protein 1 (ABCC1). Medicinal Research Reviews, 2019, 39, 2031-2081.	10.5	24
45	Novel tetrahydroisoquinolin-ethyl-phenylamine based multidrug resistance inhibitors with broad-spectrum modulating properties. Cancer Chemotherapy and Pharmacology, 2006, 59, 61-69.	2.3	23
46	Gene expression signatures of angiocidin and darapladib treatment connect to therapy options in cervical cancer. Journal of Cancer Research and Clinical Oncology, 2013, 139, 259-267.	2.5	23
47	8-Substituted 1,3-dimethyltetrahydropyrazino[2,1-f]purinediones: Water-soluble adenosine receptor antagonists and monoamine oxidase B inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 5462-5480.	3.0	23
48	Pyrrolopyrimidine derivatives and purine analogs as novel activators of Multidrug Resistance-associated Protein 1 (MRP1, ABCC1). Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 69-79.	2.6	23
49	Structure activity relationships, multidrug resistance reversal and selectivity of heteroarylphenyl ABCG2 inhibitors. European Journal of Medicinal Chemistry, 2018, 146, 483-500.	5.5	23
50	A 4-aminobenzoic acid derivative as novel lead for selective inhibitors of multidrug resistance-associated proteins. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4761-4763.	2.2	21
51	Superior Pyrimidine Derivatives as Selective ABCG2 Inhibitors and Broad-Spectrum ABCB1, ABCC1, and ABCG2 Antagonists. Journal of Medicinal Chemistry, 2020, 63, 10412-10432.	6.4	21
52	Evaluation of dual P-gp-BCRP inhibitors as nanoparticle formulation. European Journal of Pharmaceutical Sciences, 2015, 77, 1-8.	4.0	18
53	C@PA: Computer-Aided Pattern Analysis to Predict Multitarget ABC Transporter Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 3350-3366.	6.4	18
54	Analogs of a 4-aminothieno[2,3-d]pyrimidine lead (QB13) as modulators of P-glycoprotein substrate specificity. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6102-6105.	2.2	17

#	Article	IF	CITATIONS
55	Rational drug design of 6-substituted 4-anilino-2-phenylpyrimidines for exploration of novel ABCG2 binding site. European Journal of Medicinal Chemistry, 2021, 212, 113045.	5.5	17
56	Phenyltetrazolyl-phenylamides: Substituent impact on modulation capability and selectivity toward the efflux protein ABCG2 and investigation of interaction with the transporter. European Journal of Medicinal Chemistry, 2016, 124, 881-895.	5.5	16
57	Acryloylphenylcarboxamides: A New Class of Breast Cancer Resistance Protein (ABCG2) Modulators. ChemMedChem, 2016, 11, 2422-2435.	3.2	15
58	BCRP/ABCG2 inhibitors: a patent review (2009-present). Expert Opinion on Therapeutic Patents, 2015, 25, 1229-37.	5.0	15
59	Association between acquired resistance to PLX4032 (vemurafenib) and ATP-binding cassette transporter expression. BMC Research Notes, 2014, 7, 710.	1.4	13
60	Design of inhibitors of BCRP/ABCG2. Future Medicinal Chemistry, 2015, 7, 1521-1527.	2.3	13
61	Optimization of Acryloylphenylcarboxamides as Inhibitors of ABCG2 and Comparison with Acryloylphenylcarboxylates. ChemMedChem, 2016, 11, 2547-2558.	3.2	13
62	The Pyrazolo[3,4-d]pyrimidine Derivative, SCO-201, Reverses Multidrug Resistance Mediated by ABCG2/BCRP. Cells, 2020, 9, 613.	4.1	13
63	Structural feature-driven pattern analysis for multitarget modulator landscapes. Bioinformatics, 2022, 38, 1385-1392.	4.1	13
64	Scaffold fragmentation and substructure hopping reveal potential, robustness, and limits of computer-aided pattern analysis (C@PA). Computational and Structural Biotechnology Journal, 2021, 19, 3269-3283.	4.1	12
65	ABCC2 impairs the activity of the aurora kinase inhibitor tozasertib but not of alisertib. BMC Research Notes, 2015, 8, 484.	1.4	10
66	Halogenationâ€Guided Chemical Screening Provides Insight into Tjipanazole Biosynthesis by the Cyanobacterium <i>Fischerella ambigua</i> . ChemBioChem, 2020, 21, 2170-2177.	2.6	9
67	Synthesis and biological assessment of new pyrimidopyrimidines as inhibitors of breast cancer resistance protein (ABCC2). Bioorganic Chemistry, 2021, 116, 105326.	4.1	9
68	Probing Substituents in the 1- and 3-Position: Tetrahydropyrazino-Annelated Water-Soluble Xanthine Derivatives as Multi-Target Drugs With Potent Adenosine Receptor Antagonistic Activity. Frontiers in Chemistry, 2018, 6, 206.	3.6	8
69	Synthesis of Homoverrucosanoid-Derived Esters and Evaluation as MDR Modulators. Journal of Organic Chemistry, 2017, 82, 10504-10522.	3.2	7
70	Molecular Modeling of P-Glycoprotein and Related Drugs. Medicinal Chemistry Research, 2005, 14, 106-117.	2.4	6
71	Quality Visualization of Microarray Datasets Using Circos. Microarrays (Basel, Switzerland), 2012, 1, 84-94.	1.4	3
72	Recombinant Synthesis of Human ABCG2 Expressed in the Yeast Saccharomyces cerevisiae: an Experimental Methodological Study. Protein Journal, 2011, 30, 201-211.	1.6	2

#	Article	IF	CITATIONS
73	A Microarray Tool Provides Pathway and GO Term Analysis. Molecular Informatics, 2011, 30, 918-921.	2.5	2
74	Feature extraction via composite scoring and voting in breast cancer. Breast Cancer Research and Treatment, 2012, 135, 307-318.	2.5	2
75	HAGE, the helicase antigen as a biomarker for breast cancer prognosis (WO2013144616). Expert Opinion on Therapeutic Patents, 2014, 24, 723-725.	5.0	2