
Qiong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5195630/publications.pdf Version: 2024-02-01

OLONG WANG

#	Article	IF	CITATIONS
1	Quantitative Predictions of Moisture-Driven Photoemission Dynamics in Metal Halide Perovskites via Machine Learning. Journal of Physical Chemistry Letters, 2022, 13, 2254-2263.	4.6	13
2	Tuning halide perovskite energy levels. Energy and Environmental Science, 2021, 14, 1429-1438.	30.8	124
3	Texture Formation in Polycrystalline Thin Films of Allâ€Inorganic Lead Halide Perovskite. Advanced Materials, 2021, 33, e2007224.	21.0	18
4	Halogenâ€Bonded Holeâ€Transport Material Suppresses Charge Recombination and Enhances Stability of Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2101553.	19.5	44
5	Waterâ€Induced and Wavelengthâ€Dependent Light Absorption and Emission Dynamics in Tripleâ€Cation Halide Perovskites. Advanced Optical Materials, 2021, 9, 2100710.	7.3	0
6	Toward Highâ€Throughput Texturing of Polymer Foils for Enhanced Light Trapping in Flexible Perovskite Solar Cells Using Rollâ€toâ€Roll Hot Embossing. Advanced Engineering Materials, 2020, 22, 1901217.	3.5	24
7	Ultrathin Nanosheets of Oxoâ€functionalized Graphene Inhibit the Ion Migration in Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902653.	19.5	52
8	Embedded Nickelâ€Mesh Transparent Electrodes for Highly Efficient and Mechanically Stable Flexible Perovskite Photovoltaics: Toward a Portable Mobile Energy Source. Advanced Materials, 2020, 32, e2003422.	21.0	62
9	Tin Halide Perovskite Films Made of Highly Oriented 2D Crystals Enable More Efficient and Stable Lead-free Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 1923-1929.	17.4	116
10	Reply to the "Comment on the publication †̃Ferroelectricity-free lead halide perovskites' by Gomez <i>et al.</i> ―by Colsmann <i>et al.</i> . Energy and Environmental Science, 2020, 13, 1892-1895.	30.8	10
11	Managing Phase Purities and Crystal Orientation for Highâ€Performance and Photostable Cesium Lead Halide Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000213.	5.8	17
12	Large Conduction Band Energy Offset Is Critical for High Fill Factors in Inorganic Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 2343-2348.	17.4	20
13	Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold. Nature Communications, 2020, 11, 310.	12.8	313
14	The Role of Charge Selective Contacts in Perovskite Solar Cell Stability. Advanced Energy Materials, 2019, 9, 1803140.	19.5	120
15	Enhancement in lifespan of halide perovskite solar cells. Energy and Environmental Science, 2019, 12, 865-886.	30.8	143
16	Ferroelectricity-free lead halide perovskites. Energy and Environmental Science, 2019, 12, 2537-2547.	30.8	80
17	Perovskite solar cells. , 2019, , 417-446.		9
18	Rationalizing the Molecular Design of Hole‧elective Contacts to Improve Charge Extraction in Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1900990.	19.5	56

QIONG WANG

#	Article	IF	CITATIONS
19	Perovskite Grains Embraced in a Soft Fullerene Network Make Highly Efficient Flexible Solar Cells with Superior Mechanical Stability. Advanced Materials, 2019, 31, e1901519.	21.0	123
20	Highly efficient Zn2SnO4 perovskite solar cells through band alignment engineering. Chemical Communications, 2019, 55, 14673-14676.	4.1	18
21	Influence of a cobalt additive in spiro-OMeTAD on charge recombination and carrier density in perovskite solar cells investigated using impedance spectroscopy. Physical Chemistry Chemical Physics, 2018, 20, 10114-10120.	2.8	26
22	Fast Voltage Decay in Perovskite Solar Cells Caused by Depolarization of Perovskite Layer. Journal of Physical Chemistry C, 2018, 122, 4822-4827.	3.1	30
23	Impact of Ultrathin C ₆₀ on Perovskite Photovoltaic Devices. ACS Nano, 2018, 12, 876-883.	14.6	80
24	Overcoming Bulk Recombination Limits of Layered Perovskite Solar Cells with Mesoporous Substrates. Journal of Physical Chemistry C, 2018, 122, 14177-14185.	3.1	20
25	Strategies toward Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800264.	3.7	24
26	Ultrathin Hole Extraction Layer for Efficient Inverted Perovskite Solar Cells. ACS Omega, 2018, 3, 6339-6345.	3.5	5
27	Configuration-centered photovoltaic applications of metal halide perovskites. Journal of Materials Chemistry A, 2017, 5, 902-909.	10.3	18
28	Low-temperature processed solar cells with formamidinium tin halide perovskite/fullerene heterojunctions. Nano Research, 2016, 9, 1570-1577.	10.4	88
29	Highly compact and uniform CH3NH3Sn0.5Pb0.5I3 films for efficient panchromatic planar perovskite solar cells. Science Bulletin, 2016, 61, 1558-1562.	9.0	25
30	Organic–inorganic bismuth (III)-based material: A lead-free, air-stable and solution-processable light-absorber beyond organolead perovskites. Nano Research, 2016, 9, 692-702.	10.4	351
31	Solar Rechargeable Batteries Based on Lead–Organohalide Electrolyte. Advanced Energy Materials, 2015, 5, 1501418.	19.5	35
32	Control of organic–inorganic halide perovskites in solid-state solar cells: a perspective. Science Bulletin, 2015, 60, 405-418.	9.0	39
33	Wavelength-switchable photocurrent in a hybrid TiO ₂ –Ag nanocluster photoelectrode. Chemical Communications, 2015, 51, 12072-12075.	4.1	24
34	Bias-dependent effects in planar perovskite solar cells based on CH3NH3PbI3â^'Cl films. Journal of Colloid and Interface Science, 2015, 453, 9-14.	9.4	11
35	Facile preparation of smooth perovskite films for efficient meso/planar hybrid structured perovskite solar cells. Chemical Communications, 2015, 51, 10038-10041.	4.1	49
36	Transition from the Tetragonal to Cubic Phase of Organohalide Perovskite: The Role of Chlorine in Crystal Formation of CH ₃ NH ₃ Pbl ₃ on TiO ₂ Substrates. Journal of Physical Chemistry Letters, 2015, 6, 4379-4384.	4.6	91

QIONG WANG

#	Article	IF	CITATIONS
37	Stable and Lowâ€Cost Mesoscopic CH ₃ NH ₃ PbI ₂ Br Perovskite Solar Cells by using a Thin Poly(3â€hexylthiophene) Layer as a Hole Transporter. Chemistry - A European Journal, 2015, 21, 434-439.	3.3	106
38	Insight into the liquid state of organo-lead halide perovskites and their new roles in dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 10355.	10.3	8
39	Composition-dependent photoluminescence intensity and prolonged recombination lifetime of perovskite CH ₃ NH ₃ PbBr _{3â^x} Cl _x films. Chemical Communications, 2014, 50, 11727-11730.	4.1	225
40	Enhanced performance of dye-sensitized solar cells by doping Au nanoparticles into photoanodes: a size effect study. Journal of Materials Chemistry A, 2013, 1, 13524.	10.3	58