
Charles DeLisi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5194545/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Constructive principles for gene editing oversight. Nature Biotechnology, 2022, 40, 17-18.	17.5	1
2	The Role of Synthetic Biology in Atmospheric Greenhouse Gas Reduction: Prospects and Challenges. Biodesign Research, 2020, 2020, .	1.9	24
3	The role of synthetic biology in climate change mitigation. Biology Direct, 2019, 14, 14.	4.6	10
4	Visualization of Metabolic Interaction Networks in Microbial Communities Using VisANT 5.0. PLoS Computational Biology, 2016, 12, e1004875.	3.2	26
5	A network based approach to drug repositioning identifies plausible candidates for breast cancer and prostate cancer. BMC Medical Genomics, 2016, 9, 51.	1.5	42
6	Mutated Pathways as a Guide to Adjuvant Therapy Treatments for Breast Cancer. Molecular Cancer Therapeutics, 2016, 15, 184-189.	4.1	2
7	lgf1 and Pacap rescue cerebellar granule neurons from apoptosis via a common transcriptional program. Cell Death Discovery, 2015, 1, .	4.7	9
8	Evaluation and integration of cancer gene classifiers: identification and ranking of plausible drivers. Scientific Reports, 2015, 5, 10204.	3.3	18
9	VisANT 4.0: Integrative network platform to connect genes, drugs, diseases and therapies. Nucleic Acids Research, 2013, 41, W225-W231.	14.5	123
10	Using Functional Signatures to Identify Repositioned Drugs for Breast, Myelogenous Leukemia and Prostate Cancer. PLoS Computational Biology, 2012, 8, e1002347.	3.2	56
11	ROBUST GENE NETWORK ANALYSIS REVEALS ALTERATION OF THE STAT5a NETWORK AS A HALLMARK OF PROSTATE CANCER. , 2010, , .		3
12	Identification of functional modules that correlate with phenotypic difference: the influence of network topology. Genome Biology, 2010, 11, R23.	9.6	67
13	Smoothing Gene Expression Using Biological Networks. , 2010, , .		1
14	Robust gene network analysis reveals alteration of the STAT5a network as a hallmark of prostate cancer. Genome Informatics, 2010, 24, 139-53.	0.4	5
15	VisANT 3.5: multi-scale network visualization, analysis and inference based on the gene ontology. Nucleic Acids Research, 2009, 37, W115-W121.	14.5	170
16	Genome-wide prioritization of disease genes and identification of disease-disease associations from an integrated human functional linkage network. Genome Biology, 2009, 10, R91.	9.6	196
17	Santa Fe 1986: Human genome baby-steps. Nature, 2008, 455, 876-877.	27.8	27
18	Classifying transcription factor targets and discovering relevant biological features. Biology Direct, 2008, 3, 22.	4.6	9

CHARLES DELISI

#	Article	IF	CITATIONS
19	In silico regulatory analysis for exploring human disease progression. Biology Direct, 2008, 3, 24.	4.6	6
20	Ensemble Machine Methods for DNA Binding. , 2008, , .		2
21	VisANT: an integrative framework for networks in systems biology. Briefings in Bioinformatics, 2008, 9, 317-325.	6.5	121
22	Learning Methods for DNA Binding in Computational Biology. Neural Networks (IJCNN), International Joint Conference on, 2007, , .	0.0	0
23	VisANT 3.0: new modules for pathway visualization, editing, prediction and construction. Nucleic Acids Research, 2007, 35, W625-W632.	14.5	66
24	SVMotif: A Machine Learning Motif Algorithm. , 2007, , .		5
25	Towards zoomable multidimensional maps of the cell. Nature Biotechnology, 2007, 25, 547-554.	17.5	84
26	Machine learning for regulatory analysis and transcription factor target prediction in yeast. Systems and Synthetic Biology, 2007, 1, 25-46.	1.0	21
27	The interaction map of yeast: terra incognita?. Journal of Biology, 2006, 5, 10.	2.7	2
28	VisANT: data-integrating visual framework for biological networks and modules. Nucleic Acids Research, 2005, 33, W352-W357.	14.5	172
29	Binding Site Graphs: A New Graph Theoretical Framework for Prediction of Transcription Factor Binding Sites. PLoS Computational Biology, 2005, preprint, e90.	3.2	Ο
30	VisANT: an online visualization and analysis tool for biological interaction data. BMC Bioinformatics, 2004, 5, 17.	2.6	220
31	Analyzing Networks with VisANT. Current Protocols in Bioinformatics, 2004, 8, Unit 8.8.	25.8	13
32	Constructing networks with correlation maximization methods. Genome Informatics, 2004, 15, 149-59.	0.4	1
33	Predictome: a database of putative functional links between proteins. Nucleic Acids Research, 2002, 30, 306-309.	14.5	129
34	Toward a predictive understanding of molecular recognition. Immunological Reviews, 1998, 163, 251-266.	6.0	14
35	Hedgehogs, foxes, and a new science. Nature Biotechnology, 1997, 15, 819-819.	17.5	1
36	Consistency in structural energetics of protein folding and peptide recognition. Protein Science, 1997, 6, 1057-1064.	7.6	47

CHARLES DELISI

#	Article	IF	CITATIONS
37	Empirical free energy calculation: Comparison to calorimetric data. Protein Science, 1997, 6, 1976-1984.	7.6	29
38	Peptide docking using dynamic programming. , 1996, 17, 418-428.		21
39	Prediction of protein complexes using empirical free energy functions. Protein Science, 1996, 5, 614-626.	7.6	91
40	Multiple copy sampling in protein loop modeling: Computational efficiency and sensitivity to dihedral angle perturbations. Protein Science, 1994, 3, 493-506.	7.6	46
41	Monte Carlo study of the effect of β ₂ â€microglobulin on the binding cleft of the HLAâ€A2 complex. Protein Science, 1994, 3, 911-919.	7.6	2
42	Determining protein loop conformation using scalingâ€relaxation techniques. Protein Science, 1993, 2, 1242-1248.	7.6	69