Domenico Spinelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5194503/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mononuclear Heterocyclic Rearrangements. Advances in Heterocyclic Chemistry, 1981, 29, 141-169.	1.7	118
2	Study of Aromatic Nucleophilic Substitution with Amines on Nitrothiophenes in Room-Temperature lonic Liquids:  Are the Different Effects on the Behavior of para-Like and ortho-Like Isomers on Going from Conventional Solvents to Room-Temperature Ionic Liquids Related to Solvation Effects?. Journal of Organic Chemistry, 2006, 71, 5144-5150.	3.2	88
3	Fluorinated Heterocyclic Compounds. An Expedient Route to 5-Perfluoroalkyl-1,2,4-triazoles via an Unusual Hydrazinolysis of 5-Perfluoroalkyl-1,2,4-oxadiazoles:Â First Examples of an ANRORC-Like Reaction in 1,2,4-Oxadiazole Derivatives. Journal of Organic Chemistry, 2003, 68, 605-608.	3.2	80
4	Fluorinated Heterocyclic Compounds. An Effective Strategy for the Synthesis of FluorinatedZ-Oximes of 3-Perfluoroalkyl-6-phenyl-2H-1,2,4-triazin- 5-ones via a Ring-Enlargement Reaction of 3-Benzoyl-5-perfluoroalkyl-1,2,4-oxadiazoles and Hydrazine. Journal of Organic Chemistry, 2005, 70, 3288-3291.	3.2	74
5	Amine basicities in benzene and in water. Journal of the Chemical Society Perkin Transactions II, 1985, , 1865.	0.9	72
6	Calcium Channel Antagonists Discovered by a Multidisciplinary Approach. Journal of Medicinal Chemistry, 2006, 49, 5206-5216.	6.4	61
7	Room Temperature Ionic Liquids Structure and its Effect on the Mononuclear Rearrangement of Heterocycles:Â An Approach Using Thermodynamic Parameters. Journal of Organic Chemistry, 2006, 71, 9637-9642.	3.2	58
8	On the characterization of some [bmim][X]/co-solvent binary mixtures: a multidisciplinary approach by using kinetic, spectrophotometric and conductometric investigations. Tetrahedron, 2008, 64, 672-680.	1.9	56
9	Five-to-Six Membered Ring-Rearrangements in the Reaction of 5-Perfluoroalkyl-1,2,4-oxadiazoles with Hydrazine and Methylhydrazine. Journal of Organic Chemistry, 2006, 71, 8106-8113.	3.2	55
10	Can the Absence of Solvation of Neutral Reagents by Ionic Liquids Be Responsible for the High Reactivity in Base-Assisted Intramolecular Nucleophilic Substitutions in These Solvents?. Journal of Organic Chemistry, 2005, 70, 2828-2831.	3.2	53
11	Convergent Results from Experimental and Theoretical DFT Studies of the Intramolecular Rearrangement of Z-Hydrazones of 3-Acyl-1,2,4-Oxadiazoles. Journal of Physical Chemistry A, 2004, 108, 1731-1740.	2.5	46
12	The First Kinetic Evidence for Acid Catalysis in a Monocyclic Rearrangement of Heterocycles: Conversion of the Z-Phenylhydrazone of 5-Amino-3-benzoyl-1,2,4-oxadiazole into N,5-Diphenyl-2H-1,2,3-triazol-4-ylurea. Journal of Organic Chemistry, 2002, 67, 8010-8018.	3.2	41
13	Flexible Protocol for the Chemo- and Regioselective Building of Pyrroles and Pyrazoles by Reactions of Danishefsky's Dienes with 1,2-Diaza-1,3-butadienes. Organic Letters, 2008, 10, 1983-1986.	4.6	41
14	Fluorinated Heterocyclic Compoundsâ^' The First Example of an Irreversible Ring-Degenerate Rearrangement on Five-Membered Heterocycles by Attack of an External Bidentate Nucleophile. European Journal of Organic Chemistry, 2004, 2004, 974-980.	2.4	40
15	Ring opening of 2-substituted 4-nitrothiophenes with pyrrolidine. Access to new functionalized nitro-unsaturated building blocks. Tetrahedron, 2001, 57, 8159-8165.	1.9	38
16	On the Rearrangement in Dioxane/Water of (Z)-Arylhydrazones of 5-Amino-3-benzoyl-1,2,4-oxadiazole into (2-Aryl-5-phenyl-2H-1,2,3-triazol-4-yl)ureas:Â Substituent Effects on the Different Reaction Pathways. Journal of Organic Chemistry, 2006, 71, 5616-5624.	3.2	38
17	Mononuclear heterocyclic rearrangement. Note I. Kinetic study of the rearrangement of the phenylhydrazone of 3-benzoyl-5-phenyl-1,2,4-oxadiazole into 2,5-diphenyl-4-benzoylamino-1,2,3-triazole. Journal of Heterocyclic Chemistry, 1976, 13, 357-360.	2.6	37
18	Carbon-13 NMR study on the nature of resonance interactions in 4-substituted benzonitriles, acetophenones, and methyl benzoates. Journal of Organic Chemistry, 1988, 53, 3564-3568.	3.2	37

#	Article	IF	CITATIONS
19	A New Class of Selective Myocardial Calcium Channel Modulators. 2. Role of the Acetal Chain in Oxadiazol-3-one Derivatives. Journal of Medicinal Chemistry, 2005, 48, 2445-2456.	6.4	37
20	Cardiovascular Characterization of [1,4]Thiazino[3,4-c][1,2,4]oxadiazol-1-one Derivatives:Â Selective Myocardial Calcium Channel Modulators. Journal of Medicinal Chemistry, 2002, 45, 3475-3481.	6.4	35
21	Inhibition of MDR1 activity and induction of apoptosis by analogues of nifedipine and diltiazem: an in vitro analysis. Investigational New Drugs, 2011, 29, 98-109.	2.6	35
22	Improved Synthesis of Pyrroles and Indolesvia Lewis Acid-Catalyzed Mukaiyama–Michael-Type Addition/Heterocyclization of Enolsilyl Derivatives on 1,2-Diaza-1,3-Butadienes. Role of the Catalyst in the Reaction Mechanism. Advanced Synthesis and Catalysis, 2007, 349, 907-915.	4.3	33
23	On the Synthesis and Reactivity of theZ-2,4-Dinitrophenylhydrazone of 5-Amino-3-benzoyl-1,2,4-oxadiazole. Journal of Organic Chemistry, 2001, 66, 6124-6129.	3.2	32
24	Inhibition of MDR1 Activity in Vitro by a Novel Class of Diltiazem Analogues: Toward New Candidates. Journal of Medicinal Chemistry, 2009, 52, 259-266.	6.4	32
25	Nitrobutadienes from ß-nitrothiophenes: valuable building-blocks in the overall ring-opening / ring-closure protocol to homo- or hetero-cycles. Arkivoc, 2006, 2006, 169-185.	0.5	32
26	Mononuclear isoheterocyclic rearrangements. Note I. Interconversion of 3â€benzoylaminoâ€5â€methylâ€1,2,4â€oxadiazole and 3â€acetylaminoâ€5â€phenylâ€1,2,4â€oxadiazole. Journa Heterocyclic Chemistry, 1975, 12, 985-988.	al2016	30
27	L-Type Calcium Channel Blockers: From Diltiazem to 1,2,4-Oxadiazol-5-ones via Thiazinooxadiazol-3-one Derivatives. Journal of Medicinal Chemistry, 2009, 52, 2352-2362.	6.4	29
28	Synthesis and structure of condensed triazolo- and tetrazolopyrimidines. Tetrahedron, 2013, 69, 10637-10643.	1.9	28
29	Hostâ^'Guest Interactions between β-Cyclodextrin and the (Z)-Phenylhydrazone of 3-Benzoyl-5-phenyl-1,2,4-oxadiazole:Â The First Kinetic Study of a Ringâ^'Ring Interconversion in a "Confined Environment― Journal of Organic Chemistry, 2002, 67, 2948-2953.	3.2	27
30	Discovery of Novel and Cardioselective Diltiazem-like Calcium Channel Blockers via Virtual Screening. Journal of Medicinal Chemistry, 2008, 51, 5552-5565.	6.4	27
31	Oxidative Nucleophilic Substitution of Hydrogen versus Ring-Opening in the Reaction of 4-R-2-Nitrothiophenes with Amines. The Crucial Effect of 4-Alkyl Groups. Journal of Organic Chemistry, 2007, 72, 5771-5777.	3.2	26
32	Linear free energy ortho-correlations in the thiophen series. Part I. The kinetics of piperidinodebromination of some 2-bromo-3-X-5-nitrothiophens in methanol. Journal of the Chemical Society Perkin Transactions II, 1975, , 620.	0.9	25
33	Mononuclear heterocyclic rearrangements. Part 2. Substituent effects on the rate of rearrangement of some arylhydrazones of 3-benzoyl-5-phenyl-1,2,4-oxadiazole into 2-aryl-4-benzoylamino-5-phenyl-1,2,3-triazole, at pS + 3.80. Journal of the Chemical Society Perkin Transactions II. 1978. 19.	0.9	25
34	On the chemical, NMR and kinetic properties of 2-azido- and 3-azidothiophene: recent developments. Journal of the Chemical Society Perkin Transactions II, 1993, , 1129.	0.9	25
35	Catalysis in aromatic nucleophilic substitution. Note II. Piperidino substitution reactions of some 2â€lâ€3â€nitrothiophenes and 2â€lâ€5â€nitrothiophenes in methanol and benzene. Journal of Heterocyclic Chemistry, 1977, 14, 1325-1329.	2.6	24
36	Mononuclear heterocyclic rearrangements. Part 4 Synthesis and characterization of the <i>E</i> â€isomer phenylhydrazone of 3â€benzoylâ€5â€phenylâ€1,2,4â€oxadiazole. Journal of Heterocyclic Chemistry, 1980, 17, 401-402.	2.6	24

#	Article	IF	CITATIONS
37	The thermally degenerate mononuclear rearrangement of 3â€acetylaminoâ€5â€methylâ€1,2,4â€oxadiazole. Journal of Heterocyclic Chemistry, 1975, 12, 1327-1328.	2.6	23
38	Site of Protonation of Alkyl- and Arylhydrazines Probed by14N,15N, and13C NMR Relaxation and Quantum Chemical Calculations. Journal of Physical Chemistry A, 1998, 102, 2888-2892.	2.5	23
39	On the reaction between 3-bromo-2-nitrobenzo[b]thiophene and some amines: a novel aromatic nucleophilic substitution with rearrangement. Journal of the Chemical Society Perkin Transactions 1, 1995, , 1243.	0.9	22
40	Easy access to 4-nitrothiochroman S,S-dioxides via ring-enlargement from 3-nitrobenzo[b]thiophene. Tetrahedron, 2004, 60, 4967-4973.	1.9	22
41	On the Dichotomic Behavior of the Z-2,4-Dinitrophenylhydrazone of 5-Amino-3-benzoyl-1,2,4-oxadiazole with Acids in Toluene and in Dioxane/Water:  Rearrangement versus Hydrolysis. Journal of Organic Chemistry, 2004, 69, 8718-8722.	3.2	22
42	On the application of the extended Fujita–Nishioka equation to polysubstituted systems. A kinetic study of the rearrangement of several poly-substituted Z-arylhydrazones of 3-benzoyl-5-phenyl-1,2,4-oxadiazole into 2-aryl-4-benzoylamino-5-phenyl-1,2,3-triazoles in dioxane/water. Tetrahedron, 2005, 61, 167-178.	1.9	22
43	Effects of Nonionic Micelles on the Rate of Mononuclear Heterocyclic Rearrangement of (Z)-Phenylhydrazones of 5-Substituted 3-Benzoyl-1,2,4-oxadiazoles. Journal of Colloid and Interface Science, 2001, 239, 217-221.	9.4	20
44	Supramolecular Complex Formation: A Study of the Interactions betweenβ-Cyclodextrin and Some Different Classes of Organic Compounds by ESI-MS, Surface Tension Measurements, and UV/Vis and1H NMR Spectroscopy. European Journal of Organic Chemistry, 2003, 2003, 4765-4776.	2.4	20
45	NMR study of the behaviour of some methoxynitrothiophenes toward sodium methoxide. Journal of Heterocyclic Chemistry, 1970, 7, 1441-1442.	2.6	19
46	Photochemical isomerization of aryl hydrazones of 1,2,4-oxadiazole derivatives into the corresponding triazoles. Photochemical and Photobiological Sciences, 2012, 11, 1383.	2.9	19
47	On the nature of resonance interactions in substituted benzenes. Part 3. A 13C nuclear magnetic resonance study of substituent effects in 4-substituted benzamides and methyl benzoates in dimethyl sulphoxide. Journal of the Chemical Society Perkin Transactions II, 1990, , 2055.	0.9	18
48	Studies on azole-to-azole interconversions. Substituent effects on the ring-degenerate equilibration between 3-aroylamino-5-methyl-1,2,4-oxadiazoles and 3-acetylamino-5-aryl-1,2,4-oxadiazoles. Tetrahedron, 1995, 51, 5133-5142.	1.9	18
49	Differential substituent effects in 4-X-acetophenones and 4-X-2,6-dimethylacetophenones: basicity constants (pK BH+) and 170 chemical shifts. Journal of the Chemical Society Perkin Transactions II, 1995, , 1021.	0.9	18
50	An Analysis of 1H, 13C and 15N NMR Substituent Chemical Shifts in para- and meta-Substituted (Z)-Phenylhydrazones of 3-Benzoyl-5-phenyl-1,2,4-oxadiazole. European Journal of Organic Chemistry, 2002, 2002, 203-208.	2.4	18
51	Mononuclear rearrangement of heterocycles in ionic liquids catalyzed by copper(II) salts. Tetrahedron, 2008, 64, 11209-11217.	1.9	18
52	A new route to thiopyran S,S-dioxide derivatives via an overall ring-enlargement protocol from 3-nitrothiophene. Tetrahedron, 2009, 65, 336-343.	1.9	18
53	On the use of multi-parameter free energy relationships: the rearrangement of (Z)-arylhydrazones of 5-amino-3-benzoyl-1,2,4-oxadiazole into (2-aryl-5-phenyl-2H-1,2,3-triazol-4-yl)ureas. Tetrahedron, 2010, 66, 5442-5450.	1.9	18
54	Synthesis, Antitumor Activity, and Docking Analysis of New Pyrido[3',2':4,5]furo(thieno)[3,2-d]pyrimidin-8-amines. Molecules, 2019, 24, 3952.	3.8	18

#	Article	IF	CITATIONS
55	Nucleophilic substitutions in five-membered rings. Primary steric effects in thiophen derivatives. Journal of the Chemical Society Perkin Transactions II, 1975, , 816.	0.9	17
56	Mononuclear heterocyclic rearrangements. Part 7. Evidence for general base catalysis in the rearrangement of the Z-phenylhydrazone of 3-benzoyl-5-phenyl-1,2,4-oxadiazole into 2,5-diphenyl-4-benzoylamino-1,2,3-triazole in dioxan–water. Journal of the Chemical Society Perkin Transactions II, 1981, , 1325-1328.	0.9	17
57	Mononuclear heterocyclic rearrangements. Part 11. Kinetic study of the rearrangement of (Z)-phenylhydrazones of some 5-alkyl-3-benzoyl-1,2,4-oxadiazoles into 4-acylamino-2,5-diphenyl-1,2,3-triazoles in benzene, dioxane–water, and acetonitrile. Journal of the Chemical Society Perkin Transactions II. 1984 541-545.	0.9	17
58	Mononuclear heterocyclic rearrangements. Part 14. Rearrangement of some Z-arylhydrazones of 3-benzoyl-5-phenylisoxazole to 2-aryl-4-phenacyl-1,2,3-triazoles in dioxane–water. Journal of the Chemical Society Perkin Transactions II, 1987, , 537-540.	0.9	17
59	A new ring transformation: conversion of 6-p-chlorophenyl-3-methyl-5-nitrosoimidazo[2,1-b]thiazole into 8-p-chlorophenyl-8-hydroxy-5-methyl-3-oxo-1,2,4-oxadiazolo[3,4-c][1,4-]thiazine by the action of mineral acids. Journal of the Chemical Society Chemical Communications, 1992, , 1394.	2.0	17
60	Selective and Practical Oxidation of Sulfides to Diastereopure Sulfoxides: A Combined Experimental and Computational Investigation. Advanced Synthesis and Catalysis, 2013, 355, 191-202.	4.3	17
61	New heterocyclic systems derived from pyridine: new substrates forÂthe investigation of the azide/tetrazole equilibrium. Tetrahedron, 2014, 70, 8648-8656.	1.9	17
62	Mononuclear heterocyclic rearrangements. Part 9. A kinetic study of the rearrangement of the Z-phenylhydrazone of 3-benzoyl-5-phenyl-1,2,4-oxadiazole into 4-benzoylamino-2,5-diphenyl-1,2,3-triazole in methanol, dioxan, ethyl acetate, and acetonitrile. Journal of the Chemical Society Perkin Transactions II, 1983, , 1199.	0.9	16
63	Mononuclear heterocyclic rearrangements. Part 10. Kinetic study of the amine-catalysed rearrangement of the Z-p-nitrophenylhydrazone of 3-benzoyl-5-phenyl-1,2,4-oxadiazole into 4-benzoylamino-2-p-nitrophenyl-5-phenyl-1,2,3-triazole in benzene. Journal of the Chemical Society Perkin Transactions II. 1983 1203.	0.9	16
64	ABCB1 Structural Models, Molecular Docking, and Synthesis of New Oxadiazolothiazin-3-one Inhibitors. ACS Medicinal Chemistry Letters, 2013, 4, 694-698.	2.8	16
65	The behaviour of 2â€nitrothiophene and of 3â€nitrothiophene with some nucleophiles. Journal of Heterocyclic Chemistry, 1975, 12, 327-331.	2.6	15
66	Ring-ring interconversions. Part 2. Effect of the substituent on the rearrangement of 6-aryl-3-methyl-5-nitrosoimidazo[2,1-b][1,3]thiazoles into 8-aryl-8-hydroxy-5-methyl-8H-[1,4]thiazino[3,4-c][1,2,4]oxadiazol-3-ones. A novel class of potential antitumor agents. Tetrahedron, 1999, 55, 5433-5440.	1.9	15
67	On the reactivity of 3-bromo-2-nitrobenzo[b]thiophene with nucleophiles: elucidation of the base-catalysed mechanism with rearrangement. Tetrahedron, 2001, 57, 8903-8911.	1.9	15
68	On the reactivity of some 2-methyleneindolines with β-nitroenamines, α-nitroalkenes, and 1,2-diaza-1,3-butadienes. Tetrahedron, 2006, 62, 6420-6434.	1.9	15
69	Mononuclear rearrangements of heterocycles in water/β-CD: information on the real site of reaction from structural modifications of substrates and from proton concentration dependence of the reactivity. Tetrahedron, 2007, 63, 10260-10268.	1.9	15
70	Acid- and Base-Catalysis in the Mononuclear Rearrangement of Some (<i>Z</i>)-Arylhydrazones of 5-Amino-3-benzoyl-1,2,4-oxadiazole in Toluene: Effect of Substituents on the Course of Reaction. Journal of Organic Chemistry, 2011, 76, 2672-2679.	3.2	15
71	Mononuclear heterocyclic rearrangements 5. Kinetic Investigation of the behaviour of (<i>e</i>)â€and (<i>z</i>)â€phenylhydrazones of 3â€benzoylâ€5â€phenylâ€1,2,4â€oxadiazole in benzene. Isomerization and rearrangement. Journal of Heterocyclic Chemistry, 1980, 17, 861-864.	2.6	14
72	Mononuclear heterocyclic rearrangement. Part 6 . Studies on base catalysis of the rearrangement of the (<i>Z</i>)â€ <i>p</i> â€nitrophenylhydrazone of 3â€benzoylâ€5â€phenylâ€1,2,4â€oxadiazole in benzene: Ef piperidine, triethylamine and of some secondary amines. Journal of Heterocyclic Chemistry, 1981, 18, 723-725.	fect of	14

#	Article	IF	CITATIONS
73	Mononuclear heterocyclic rearrangements. Part 13. Substituent effects on the rearrangement of some Z-arylhydrazones of 3-benzoyl-5-phenyl-1,2,4-oxadiazole to 2-aryl-4-benzoylamino-5-phenyl-1,2,3-triazoles in benzene, dioxane, ethyl acetate, acetonitrile, and methanol. Journal of the Chemical Society Perkin Transactions II, 1986, , 1183.	0.9	14
74	On the Reaction of 3-Bromo-2-nitrobenzo[b]thiophene 13C-Labeled at C-2 with 3-(Trifluoromethyl)aniline:  A Preliminary Insight into a Nucleophilic Substitution with Rearrangement. Journal of Organic Chemistry, 1997, 62, 4921-4923.	3.2	14
75	Mononuclear heterocyclic rearrangements. Part 16. Kinetic study of the rearrangement of some ortho-substituted Z-phenylhydrazones of 3-benzoyl-5-phenyl-1,2,4-oxadiazole into 2-aryl-4-benzoylamino-5-phenyl-1,2,3-triazoles in dioxane-water and in benzene. Tetrahedron, 1999, 55, 12885-12896.	1.9	14
76	Influence of nitroreductase and O-acetyltransferase on the mutagenicity of substituted nitrobenzothiophenamines in Salmonella typhimurium. Chemico-Biological Interactions, 1999, 118, 99-111.	4.0	14
77	On the reaction of 3-bromo-2-nitrobenzo[b]thiophene with some ortho-substituted anilines: an analysis of the products of reaction and of their NMR and MS properties. Tetrahedron, 2003, 59, 7189-7201.	1.9	14
78	On the reactivity of pyrido[3′,2′:4,5]furo(thieno)[3,2-d]pyrimidin-7(8)-ones with some alkyl mono- and di-halides: synthesis of new heterocyclic systems containing thiazolo[3,2-a]pyrimidine and pyrimido[2,1-b]thiazine moiety. Tetrahedron, 2015, 71, 7638-7646.	1.9	14
79	Heterocyclic Rearrangements. A Semiempirical Study of a Degenerate Rearrangement in the 1,2,4-Oxadiazole Series. Heterocycles, 1991, 32, 1547.	0.7	14
80	Electron reduction processes of nitrothiophenes. A systematic approach by DFT computations, cyclic voltammetry and E-ESR spectroscopy. Organic and Biomolecular Chemistry, 2012, 10, 7986.	2.8	13
81	The Boulton–Katritzky Reaction: A Kinetic Study of the Effect of 5â€Nitrogen Substituents on the Rearrangement of Some (<i>Z</i>)â€Phenylhydrazones of 3â€Benzoylâ€1,2,4â€oxadiazoles. European Journal of Organic Chemistry, 2014, 2014, 7006-7014.	2.4	13
82	Pyridofuropyrrolo[1,2-a]pyrimidines and pyridofuropyrimido[1,2-a]azepines: new chemical entities (NCE) with anticonvulsive and psychotropic properties. RSC Advances, 2016, 6, 49028-49038.	3.6	13
83	The azide/tetrazole equilibrium: an investigation in the series of furo- and thieno[2,3-e]tetrazolo[3,2-d]pyrimidine derivatives. Tetrahedron, 2016, 72, 1919-1927.	1.9	13
84	Synthesis and antimicrobial activity of new derivatives of pyrano[4'',3'':4',5']pyrido[3',2':4,5]thieno[3,2- <i>d</i>]pyrimidine and new heterocyclic systems. Synthetic Communications, 2019, 49, 1262-1276.	2.1	13
85	A 13C n.m.r. study of 5-cyano-, 5-methoxycarbonyl-, 5-carbamoyl-, and 5-acetyl-3-nitro-2-X-thiophenes: substituent effects and their relation to the charge distribution in corresponding 2,2-dimethoxy Meisenheimer adducts. Journal of the Chemical Society Perkin Transactions II, 1989, , 1779.	0.9	12
86	Copper(II)-catalyzed molecular rearrangements: the behaviour of arylhydrazones of some 3-benzoylazoles in the presence of copper(II) acetate. Journal of the Chemical Society Perkin Transactions 1, 1993, , 2491.	0.9	12
87	Mononuclear heterocyclic rearrangements. Effect of the structure of the side chain on the reactivity. Part 3. Rearrangement of some N-(5-phenyl-1,2,4-oxadiazol-3-yl)-Nâ€2-arylformamidines into 1-aryl-3-benzoylamino-1,2,4-triazoles in acetonitrile in the presence of triethylamine. Tetrahedron, 1994, 50, 7315-7326	1.9	12
88	Ringa€"ring interconversion: the rearrangement of 6-(4-chlorophenyl)-3-methyl-5-nitrosoimidazo[2,1-b][1,3]thiazole into 8-(4-chlorophenyl)-8-hydroxy-5-methyl-8H-[1,4]thiazino[3,4-c][1,2,4]oxadiazol-3-one. Elucidation of the reaction product through spectroscopic and X-ray crystal structure analysis. Journal of the	0.9	12
89	Cnemical Society Perkin Transactions II, 1997, , 2407-2410. Substituent effect on the redox potential of substituted (aryl)(2-nitrobenzo[b]thiophen-3-yl)amines. Tetrahedron, 2001, 57, 1857-1860.	1.9	12
90	Sensitivity of different resistant tumour cell lines to the two novel compounds (2Z,4E)-2-methylsulfanyl-5-(1-naphthyl)-4-nitro-2,4-pentadienoate and (1E,3E)-1,4-bis(2-naphthyl)-2,3-dinitro-1,3-butadiene. European Journal of Pharmacology, 2008, 588, 47-51.	3.5	12

#	Article	IF	CITATIONS
91	Synthesis and antimicrobial activity of new amino derivatives of pyrano[4'',3'':4',5']pyrido[3',2':4,5]thieno[3,2-d]pyrimidine. Anais Da Academia Bi 90, 1043-1057.	r o s\$leira	De1@iencias,
92	Thiophene series. Substituent effect on thiophenoxy debromination of various 2â€nitroâ€3â€bromoâ€5â€Xâ€thiophenes. Journal of Heterocyclic Chemistry, 1970, 7, 1333-1336.	2.6	11
93	Linear free energy <i>ortho</i> â€correlations in the thiophene series. Part IX . Kinetics of esterification with diazodiphenylmethane of some 3â€; 4â€; and 5â€substituted thiopheneâ€2â€carboxylic acids in methanol. Journal of Heterocyclic Chemistry, 1981, 18, 735-738.	2.6	11
94	Meisenheimer-type adducts from thiophene derivatives. Part 2. Kinetic, thermodynamic, and 13C n.m.r. studies of substituent effects in the reaction of sodium methoxide with some 2-methoxy-3-nitro-5-X-thiophenes in methanol. Journal of the Chemical Society Perkin Transactions II, 1984. 317.	0.9	11
95	Mononuclear heterocyclic rearrangements. Effect of the structure of the side chain on the reactivity. Part 1. Rearrangement of some 3-arylureines of 5-pheny-1,2,4-oxadiazole into 1-aryl-3-benzoylamino-1,2,4-triazolin-5-ones in acetonitrile, benzene, and dioxane–water. Journal of the Chemical Society Perbin Transactions II, 1990, 1289-1295	0.9	11
96	Mononuclear heterocyclic rearrangements. Effect of the structure of the side chain on the reactivity. Part 2. Rearrangement of some N-(5-phenyl-1,2,4-oxadiazol-3-yl)-Nâ€ ² -arylformamidines into 1-aryl-3-benzoylamino-l,2,4-triazoles in dioxane–water at various pS+. Journal of the Chemical Society Perkin Transactions II 1993 1339-1343	0.9	11
97	On the behaviour of the (Z)-phenylhydrazones of some 5-alkyl-3-benzoyl-1,2,4-oxadiazoles in solution and in the gas phase: kinetic and spectrometric evidence in favour of self-assembly. Tetrahedron, 2008, 64, 733-740.	1.9	11
98	On the reaction of 2-[(4-cyano-5,6,7,8-tetrahydroisoquinolin-3-yl)oxy]acetamides with bases: 1-amino-6,7,8,9-tetrahydrofuro[2,3-c]isoquinoline-2-carboxamides and 3-amino-4-cyano-5,6,7,8-tetrahydroisoquinolines via a Smiles-type rearrangement. Tetrahedron, 2015, 71, 3263-3272	1.9	11
99	Mononuclear heterocyclic rearrangements. Part 12. Kinetic study of substituent effects on the rearrangement of the (Z)-phenylhydrazones of some 5-aryl-3-benzoyl-1,2,4-oxidiazoles into 4-aroylamino-2,5-diphenyl-1,2,3-triazoles in dioxane–water at various pS+values. Journal of the Chemical Society Perkin Transactions II 1984 785-789	0.9	10
100	Mechanism of genotoxicity and electron density distribution by NMR of 5-nitro-3-thiophenecarboxamides, a novel group of direct-acting mutagens in Salmonella typhimurium. Chemico-Biological Interactions, 1993, 86, 229-254.	4.0	10
101	Ringâ€ring interconversions. Part 3. On the effect of the substituents on the thiazole moiety in the ringâ€opening/ringâ€closing reactions of nitrosoimidazo[2,1â€ <i>b</i>][1,3]thiazoles with hydrochloric acid. Journal of Heterocyclic Chemistry, 2000, 37, 875-878.	2.6	10
102	On the structure of 3â€acetylaminoâ€5â€methylâ€1,2,4â€oxadiazole and on the fully degenerate rearrangements (FDR) of its anion: a stimulating comparison between the results of †inâ€silicon chemistry' and †laboratory chemistry'. Journal of Physical Organic Chemistry, 2009, 22, 1086-1093.	1.9	10
103	Understanding Oxadiazolothiazinone Biological Properties: Negative Inotropic Activity versus Cytochrome P450-Mediated Metabolism. Journal of Medicinal Chemistry, 2016, 59, 3340-3352.	6.4	10
104	An analysis of 13C nuclear magnetic resonance substituent chemical shifts in 3-substituted thiophene-2-carboxylic and 2-substituted benzoic acids by linear free energy relationships. Journal of the Chemical Society Perkin Transactions II, 1988, , 887.	0.9	9
105	Ring–Ring Interconversions of Nitrosoimidazoles. The Effect of some Condensed Six-Membered Rings on the Reactivity. Tetrahedron, 2000, 56, 6527-6532.	1.9	9
106	Studies on Azole-to-Azole Interconversion ⰠAn Interesting Case of Absence of a "Primary Steric Effect―in the Ring-Degenerate Equilibration betweenortho-Substituted 3-Aroylamino-5-methyl-1,2,4-oxadiazoles and 3-Acetylamino-5-aryl-1,2,4-oxadiazoles in Methanol. European Journal of Organic Chemistry, 2002, 2002, 1417-1423.	2.4	9
107	Isomerization and rearrangement of (<i>E</i>)â€and (<i>Z</i>)â€phenylhydrazones of 3â€benzoylâ€5â€phenylâ€1,2,4â€oxadiazole: evidence for a â€new' type of acidâ€catalysis by copper(II) salts mononuclear rearrangement of heterocycles. Journal of Physical Organic Chemistry, 2008, 21, 306-314.	5 1i19	9
108	Absolute configuration and biological profile of two thiazinooxadiazol-3-ones with L-type calcium	2.8	9

channel activity: a study of the structural effects. Organic and Biomolecular Chemistry, 2012, 10, 8994. 108

#	Article	IF	CITATIONS
109	Mononuclear rearrangement of heterocycles in zwitterionic micelles of amine oxide surfactants. Journal of Colloid and Interface Science, 2012, 381, 67-72.	9.4	9
110	Studies on the oeearboxylation reactions. Note II. Kinetic study of the decarboxylation reaction of 5â€aminoâ€1,3,4â€thiadiazoleâ€2â€carboxylic acid (I) to 2â€aminoâ€1,3,4â€thiadiazole (III). Journal of Heterocy Chemistry, 1977, 14, 309-311.	ctace	8
111	Synthesis and Neurotropic Activity of New Heterocyclic Systems: Pyridofuro[3,2-d]pyrrolo[1,2-a]pyrimidines, Pyridofuro[3,2-d]pyrido[1,2-a]pyrimidines and Pyridofuro[3′,2′:4,5]pyrimido[1,2-a]azepines. Molecules, 2021, 26, 3320.	3.8	8
112	Mononuclear heterocyclic rearrangements. Part III. Rearrangement of theP-methoxyphenylhydrazone and them-nitrophenylhydrazone of 3-benzoyl-5-phenyl-1,2,4-oxadiazole in dioxane/water in thepS+range 3.8-11.5. Journal of Heterocyclic Chemistry, 1979, 16, 359-361.	2.6	7
113	A kinetic study on the base-catalysed E→Z isomerization of some arylhydrazones of 3-benzoyl-5-phenyl-1,2,4-oxadiazole: effect of the substituents in the arylhydrazone moiety. Journal of the Chemical Society Perkin Transactions II, 1990, , 215-221.	0.9	7
114	Elucidating chemical reactivity and transition state of mononuclear rearrangement of heterocycles through the use of compartimentalized micellar media. Journal of Molecular Catalysis A, 2014, 383-384, 114-120.	4.8	7
115	New Methods for the Synthesis of 3â€Aminoâ€6,7â€Dihydroâ€5 <i>H</i> â€Cyclopenta[<i>c</i>]Pyridineâ€4â€Carbonitriles and Cyclopenta[<i>d</i>]Pyrazolo[3,4â€ <i>b</i>]Pyridines via a Smilesâ€ŧype Rearrangement. Journal of Heterocyclic Chemistry. 2017. 54. 1199-1209.	2.6	7
116	Synthesis of New Heterocyclic Systems: Pyrido[3′,2′:4,5]thieno(furo)[2,3â€ <i>e</i>][1,2,4]triazolopyrimidines and an Unusual ANRORC Rearrangement in the Fused Pyrimidine Series. ChemistrySelect, 2018, 3, 10938-10942.	1.5	7
117	3-Aryl-4-nitrobenzothiochromans S,S-dioxide: From Calcium-Channel Modulators Properties to Multidrug-Resistance Reverting Activity. Molecules, 2020, 25, 1056.	3.8	7
118	A Nitrocarbazole as a New Microtubule-Targeting Agent in Breast Cancer Treatment. Applied Sciences (Switzerland), 2021, 11, 9139.	2.5	7
119	New Cyclopenta[4',5']pyrido[3',2':4,5]thieno[2,3-e][1,2,4]triazolo[4,3-c]pyrimidines and Cyclopenta[4',5']pyrido[3',2':4,5]thieno[2,3-e][1,2,4]triazolo[1,5-c]pyrimidines: Synthesis and Antimicrobial Activities. Current Organic Chemistry, 2017, 21, 1227-1241.	1.6	7
120	Synthesis and Evaluation of Antimicrobial Activity and Molecular Docking of New N-1,3-thiazol-2-ylacetamides of Condensed Pyrido[3',2':4,5] furo(thieno)[3,2-d]pyrimidines. Current Topics in Medicinal Chemistry, 2020, 20, 2192-2209.	2.1	7
121	Meisenheimer-type adducts from thiophene derivatives. Part 7. Interdependence of 13C NMR, thermodynamic and kinetic data. Journal of the Chemical Society Perkin Transactions II, 1991, , 1631.	0.9	6
122	Substituent effects on one-bond carbon-13-carbon-13 NMR coupling constants between the carbonyl carbon and C1 in methyl benzoates. Is there a dependence on .pibond-order changes?. Journal of Organic Chemistry, 1992, 57, 4061-4063.	3.2	6
123	15N NMR: Substituent effect analysis inpara-andmeta-substituted phenylhydrazines. Magnetic Resonance in Chemistry, 1994, 32, 111-117.	1.9	6
124	A deep insight into the mechanism of the acidâ€catalyzed rearrangement of the <i>Z</i> â€phenylhydrazone of 5â€aminoâ€3â€benzoylâ€1,2,4â€oxadiazole in a nonâ€polar solvent. Journal of Physical Organic Chemistry, 20 24, 185-192.)lil9	6
125	Playing with Opening and Closing of Heterocycles: Using the Cusmano-Ruccia Reaction to Develop a Novel Class of Oxadiazolothiazinones, Active as Calcium Channel Modulators and P-Clycoprotein Inhibitors. Molecules, 2014, 19, 16543-16572.	3.8	6
126	On the reactivity of nitrosoimidazoles with acids (the Cusmano–Ruccia reaction): a continuous source of new ring-into-ring interconversion. Tetrahedron Letters, 2014, 55, 1488-1490.	1.4	6

#	Article	IF	CITATIONS
127	On the reactivity of 4-cyano-1,3-dichloro-7-methyl-5,6,7,8-tetrahydro-2,7-naphthyridine with several amines in different experimental conditions: monosubstitution, disubstitution, and a new unexpected rearrangement. Tetrahedron, 2014, 70, 4891-4902.	1.9	6
128	On the rearrangement of some Z -arylhydrazones of 3-benzoyl-5-phenylisoxazoles into 2-aryl-4-phenacyl-2 H -1,2,3-triazoles: a kinetic study of the substituent effects in Boulton–Katritzky reactions. Tetrahedron, 2015, 71, 7315-7322.	1.9	6
129	Pyridofuropyrrolo[1,2-a]pyrimidines and pyridofuropyrimido[1,2-a]azepines: new chemical entities (NCE) with anticonvulsive and psychotropic properties. RSC Advances, 2016, 6, 32234-32244.	3.6	6
130	Mononuclear Rearrangement of theZ-Phenylhydrazones of Some 3-Acyl-1,2,4-oxadiazoles: Effect of Substituents on the Nucleophilic Character of the >Câ•N–NH–C6H5Chain and on the Charge Density of N-2 of the 1,2,4-Oxadiazole Ring (Electrophilic Counterpart). Journal of Organic Chemistry, 2019, 84, 2462-2469.	3.2	6
131	On the Nucleophilic Reactivity of 4,6-Dichloro-5-nitrobenzofuroxan with Some Aliphatic and Aromatic Amines: Selective Nucleophilic Substitution. Journal of Organic Chemistry, 2020, 85, 13472-13480.	3.2	6
132	Synthesis of 3,3-dimethyl-6-oxopyrano[3,4- <i>c</i>]pyridines and their antiplatelet and vasodilatory activity. Journal of Pharmacy and Pharmacology, 2022, 74, 887-895.	2.4	6
133	An analysis of 13C nuclear magnetic resonance substituent chemical shifts in 4- and 5-substituted thiophene-2-carboxylic acids by linear free energy relationships. Journal of the Chemical Society Perkin Transactions II, 1987, , 689.	0.9	5
134	Gas-Phase and Solution Basicities of Some Alkyl 2,6-Dialkylphenyl Ketones: a Comparative Analysis. Tetrahedron, 2000, 56, 4565-4573.	1.9	5
135	A Novel Approach to the Evaluation of the Importance of Steric and Electronic Effects in S _N Ar Reactions: A Computational, Thermodynamic and ¹ H and ¹³ C NMR Study of "Meisenheimer‶ype―Adducts in the Benzo[<i>b</i>]thiophene Series. European Journal of Organic Chemistry. 2010. 2010. 5807-5816.	2.4	5
136	Synthesis and structure of a new heterocyclic system: pyrido[3′,2′:4,5]furo[3,2-d][1,2,4]triazolo[4,3-a]pyrimidin-7(8)-one. Tetrahedron Letters, 2016, 57, 5338-5	340.	5
137	The P-glycoprotein inhibitor diltiazem-like 8-(4-chlorophenyl)-5-methyl-8-[(2Z)-pent-2-en-1-yloxy]-8H-[1,2,4]oxadiazolo[3,4-c][1,4]thiazin-3-one inhibits esterase activity and H3 histone acetylation. European Journal of Medicinal Chemistry, 2019, 164, 1-7.	5.5	5
138	Synthesis of New Derivatives of Heterocyclic Systems Containing Triazolopyrimidine, thiazolo[3,2-a]pyrimidine and pyrimido[2,1-b] thiazine Moiety Showing Promising Antimicrobial Activity. Current Organic Chemistry, 2019, 22, 2576-2588.	1.6	5
139	Mass spectra of some 2- and 4-substituted thiophenecarboxylic acids. Organic Mass Spectrometry, 1983, 18, 449-451.	1.3	4
140	Nitrogen-15 NMR Studies on Hydrazines. 2— Substituent Effect Analysis inortho-Substituted Phenylhydrazines and Anilines. Magnetic Resonance in Chemistry, 1996, 34, 1019-1024.	1.9	4
141	Condensed 2-pyrrolidinone-1,2-oxazines from lithium enolate of 1-benzyl-5-oxo-3-pyrrolidinecarboxylic acid and β-aryl, β-nitroenamines. Tetrahedron, 2006, 62, 8787-8791.	1.9	4
142	Synthesis and L-type calcium channel blocking activity of new chiral oxadiazolothiazinones. European Journal of Medicinal Chemistry, 2015, 92, 481-489.	5.5	4
143	Comparative spectroscopic and electrochemical study of N-1 or N-2-alkylated 4-nitro and 7-nitroindazoles. Arabian Journal of Chemistry, 2017, 10, 823-836.	4.9	4
144	NMR Study of the (Z)-Phenylhydrazones of 5-Alkyl- and 5-Aryl-3-benzoyl-1,2,4-oxadiazoles: Support for the Interpretation of Kinetic Results on the Rearrangement of 1,2,4-Oxadiazoles to 1,2,3-Triazoles. European Journal of Organic Chemistry, 2005, 2005, 3980-3986.	2.4	3

#	Article	IF	CITATIONS
145	<i>ortho</i> -Substituted (Aryl)(3-nitrobenzo[<i>b</i>]thiophen-2-yl)amines: Study of the Electrochemical Behavior. Journal of Physical Chemistry A, 2009, 113, 10260-10263.	2.5	3
146	Apolar versus Polar Solvents: A Comparison of the Strength of Some Organic Acids against Different Bases in Toluene and in Water. Journal of Physical Chemistry A, 2010, 114, 10969-10974.	2.5	3
147	An Unexpected Pathway to Enantiomerization of Hemithioketals in Toluene Involving a Dimeric Transition State: A Combined Experimental and Computational Study. European Journal of Organic Chemistry, 2015, 2015, 4353-4357.	2.4	3
148	A multidisciplinary study of chemico-physical properties of different classes of 2-aryl-5(or) Tj ETQq0 0 0 rgBT /Ove Chemistry, 2021, 14, 103179.	erlock 10 4.9	Tf 50 627 Td 3
149	Spectroscopic and Electrochemical Properties of 1- or 2-alkyl Substituted 5- and 6-Nitroindazoles. Current Organic Chemistry, 2015, 19, 1526-1537.	1.6	3
150	Investigation of the lactam-lactim and Thiolactam-thiolactim Tautomerism in the 2,2,5-Trimethylpyrano[4",3":4';,5';]pyrido[3';,2';:4,5]furo(thieno)[3,2-d]pyrimidines. Current Organic Chemistry, 2016, 20, 1350-1358.	1.6	3
151	Unexpected Substituent Effects in the Iso-Heterocyclic Boulton–Katritzky Rearrangement of 3-Aroylamino-5-methyl-1,2,4-oxadiazoles: A Mechanistic Study. Journal of Physical Chemistry A, 2019, 123, 10004-10010.	2.5	2
152	Synthesis of 1-Amino-3-oxo-2,7-naphthyridines via Smiles Rearrangement: A New Approach in the Field of Chemistry of Heterocyclic Compounds. International Journal of Molecular Sciences, 2022, 23, 5904.	4.1	2
153	Synthesis and antimicrobial evaluation of novel polyheterocyclic systems derived from cyclopenta[4',5']pyrido[3',2':4,5]furo[3,2-d]pyrimidine. Chemistry of Heterocyclic Compounds, 2021, 57, 75-80.	1.2	1
154	New heterocyclic systems: Pyrido[2′,3′:5,4]thieno(furo)[3,2-d]oxazines as intermediate compounds for the synthesis of substituted pyrido[3′,2′:4,5]thieno(furo)[3,2-d]pyrimidines. Synthetic Communications, 2019, , 1-11.	2.1	0
155	4,6-Dichloro-5-Nitrobenzofuroxan: Different Polymorphisms and DFT Investigation of Its Reactivity with Nucleophiles. International Journal of Molecular Sciences, 2021, 22, 13460.	4.1	0
156	Synthesis of new heterocyclic systems fused at pyrazolo[3,4-c]-2,7-naphthyridine core. Mendeleev Communications, 2022, 32, 393-394.	1.6	0