
Yingxiang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/519435/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Histone demethylase IBM1-mediated meiocyte gene expression ensures meiotic chromosome synapsis and recombination. PLoS Genetics, 2022, 18, e1010041.	3.5	1
2	An Fâ€box protein ACOZ1 functions in crossover formation by ensuring proper chromosome compaction during maize meiosis. New Phytologist, 2022, 235, 157-172.	7.3	5
3	Identifying small RNAs and Analyzing Their Association with Gene Expression Using IsolatedÂArabidopsis Male Meiocytes. Methods in Molecular Biology, 2022, 2484, 23-41.	0.9	Ο
4	Functional Characterization of the Lysine-Specific Histone Demethylases Family in Soybean. Plants, 2022, 11, 1398.	3.5	4
5	Small RNA in plant meiosis and gametogenesis. Reproduction and Breeding, 2022, 2, 65-70.	1.6	3
6	Modulation of evening complex activity enables north-to-south adaptation of soybean. Science China Life Sciences, 2021, 64, 179-195.	4.9	22
7	Fanconi anemia ortholog FANCM regulates meiotic crossover distribution in plants. Plant Physiology, 2021, 186, 344-360.	4.8	13
8	Comparative transcriptomic analysis of thermally stressed Arabidopsis thaliana meiotic recombination mutants. BMC Genomics, 2021, 22, 181.	2.8	3
9	Comparison of Metabolic Profiling of Arabidopsis Inflorescences Between Landsberg erecta and Columbia, and Meiosis-Defective Mutants by 1H-NMR Spectroscopy. Phenomics, 2021, 1, 73-89.	2.9	4
10	RAD51 supports DMC1 by inhibiting the SMC5/6 complex during meiosis. Plant Cell, 2021, 33, 2869-2882.	6.6	30
11	Regulation of interference-sensitive crossover distribution ensures crossover assurance in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	14
12	Cell-type-dependent histone demethylase specificity promotes meiotic chromosome condensation in Arabidopsis. Nature Plants, 2020, 6, 823-837.	9.3	13
13	The cohesin loader SCC2 contains a PHD finger that is required for meiosis in land plants. PLoS Genetics, 2020, 16, e1008849.	3.5	18
14	Hyponastic Leaves 1 protects pri-miRNAs from nuclear exosome attack. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17429-17437.	7.1	23
15	Conservation and Divergence in the Meiocyte sRNAomes of Arabidopsis, Soybean, and Cucumber. Plant Physiology, 2020, 182, 301-317.	4.8	13
16	Meiocyte-Specific and AtSPO11-1–Dependent Small RNAs and Their Association with Meiotic Gene Expression and Recombination. Plant Cell, 2019, 31, 444-464.	6.6	37
17	The Arabidopsis anaphaseâ€promoting complex/cyclosome subunit 8 is required for male meiosis. New Phytologist, 2019, 224, 229-241.	7.3	15
18	Anaphase-promoting complex/cyclosome regulates RdDM activity by degrading DMS3 in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3899-3908.	7.1	14

YINGXIANG WANG

#	Article	IF	CITATIONS
19	The Largest Subunit of DNA Polymerase Delta Is Required for Normal Formation of Meiotic Type I Crossovers. Plant Physiology, 2019, 179, 446-459.	4.8	29
20	Engineering stable heterosis. Journal of Genetics and Genomics, 2019, 46, 1-3.	3.9	3
21	Meiotic Recombination: Mixing It Up in Plants. Annual Review of Plant Biology, 2018, 69, 577-609.	18.7	169
22	Insights Into the Role of Ubiquitination in Meiosis: Fertility, Adaptation and Plant Breeding. The Arabidopsis Book, 2018, 16, e0187.	0.5	11
23	The Number of Meiotic Double-Strand Breaks Influences Crossover Distribution in Arabidopsis. Plant Cell, 2018, 30, 2628-2638.	6.6	52
24	Elevated temperature increases meiotic crossover frequency via the interfering (Type I) pathway in Arabidopsis thaliana. PLoS Genetics, 2018, 14, e1007384.	3.5	60
25	Bivalent Formation 1, a plant-conserved gene, encodes an OmpH/coiled-coil motif-containing protein required for meiotic recombination in rice. Journal of Experimental Botany, 2017, 68, 2163-2174.	4.8	12
26	A Strategy for Screening Monoclonal Antibodies for Arabidopsis Flowers. Frontiers in Plant Science, 2017, 8, 270.	3.6	3
27	Arabidopsis RAD51, RAD51C and XRCC3 proteins form a complex and facilitate RAD51 localization on chromosomes for meiotic recombination. PLoS Genetics, 2017, 13, e1006827.	3.5	37
28	The PHD Finger Protein MMD1/DUET Ensures the Progression of Male Meiotic Chromosome Condensation and Directly Regulates the Expression of the Condensin Gene <i>CAP-D3</i> . Plant Cell, 2016, 28, 1894-1909.	6.6	46
29	New insights into the role of DNA synthesis in meiotic recombination. Science Bulletin, 2016, 61, 1260-1269.	9.0	4
30	Genome-wide characterization of soybean P 1B -ATPases gene family provides functional implications in cadmium responses. BMC Genomics, 2016, 17, 376.	2.8	44
31	The <scp>DYT</scp> 1â€interacting proteins b <scp>HLH</scp> 010, b <scp>HLH</scp> 089 and b <scp>HLH</scp> 091 are redundantly required for <scp>A</scp> rabidopsis anther development and transcriptome. Plant Journal, 2015, 83, 976-990.	5.7	136
32	Arabidopsis <i>Cell Division Cycle 20.1</i> Is Required for Normal Meiotic Spindle Assembly and Chromosome Segregation. Plant Cell, 2015, 27, 3367-3382.	6.6	55
33	Analysis of Arabidopsis floral transcriptome: detection of new florally expressed genes and expansion of Brassicaceae-specific gene families. Frontiers in Plant Science, 2015, 5, 802.	3.6	28
34	Formation of interference-sensitive meiotic cross-overs requires sufficient DNA leading-strand elongation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12534-12539.	7.1	23
35	Expansion and Functional Divergence of Jumonji C-Containing Histone Demethylases: Significance of Duplications in Ancestral Angiosperms and Vertebrates. Plant Physiology, 2015, 168, 1321-1337.	4.8	67
36	Alternative splicing during Arabidopsis flower development results in constitutive and stage-regulated isoforms. Frontiers in Genetics, 2014, 5, 25.	2.3	45

YINGXIANG WANG

#	Article	IF	CITATIONS
37	MeioBase: a comprehensive database for meiosis. Frontiers in Plant Science, 2014, 5, 728.	3.6	3
38	The <scp>A</scp> rabidopsis <i><scp>RAD</scp>51</i> paralogs <i><scp>RAD</scp>51B</i> , <i><scp>RAD</scp>51<scp>D</scp></i> and <i><scp>XRCC</scp>2</i> play partially redundant roles in somatic <scp>DNA</scp> repair and gene regulation. New Phytologist, 2014, 201, 292-304.	7.3	37
39	RNA-seq analyses of multiple meristems of soybean: novel and alternative transcripts, evolutionary and functional implications. BMC Plant Biology, 2014, 14, 169.	3.6	229
40	Meiosis: Interactions Between Homologous Chromosomes. , 2014, , 1-34.		2
41	Molecular Cell Biology of Male Meiotic Chromosomes and Isolation of Male Meiocytes in Arabidopsis thaliana. Methods in Molecular Biology, 2014, 1110, 217-230.	0.9	52
42	Disruption of AtWNK8 Enhances Tolerance of Arabidopsis to Salt and Osmotic Stresses via Modulating Proline Content and Activities of Catalase and Peroxidase. International Journal of Molecular Sciences, 2013, 14, 7032-7047.	4.1	46
43	The DNA Replication Factor RFC1 Is Required for Interference-Sensitive Meiotic Crossovers in Arabidopsis thaliana. PLoS Genetics, 2012, 8, e1003039.	3.5	75
44	The <i>Arabidopsis thaliana</i> DSB formation (<i>AtDFO</i>) gene is required for meiotic doubleâ€strand break formation. Plant Journal, 2012, 72, 271-281.	5.7	46
45	Overexpression of the soybean GmWNK1 altered the sensitivity to salt and osmotic stress in Arabidopsis. Journal of Plant Physiology, 2011, 168, 2260-2267.	3.5	19
46	The transcriptome landscape of Arabidopsis male meiocytes from highâ€ŧhroughput sequencing: the complexity and evolution of the meiotic process. Plant Journal, 2011, 65, 503-516.	5.7	135
47	Molecular control of microsporogenesis in Arabidopsis. Current Opinion in Plant Biology, 2011, 14, 66-73.	7.1	88
48	Development: A Pathway to Plant Female Germ Cells. Current Biology, 2011, 21, R476-R478.	3.9	6
49	The soybean root-specific protein kinase GmWNK1 regulates stress-responsive ABA signaling on the root system architecture. Plant Journal, 2010, 64, 230-242.	5.7	50
50	Overexpressing <i>AtPAP15</i> Enhances Phosphorus Efficiency in Soybean. Plant Physiology, 2009, 151, 233-240.	4.8	208
51	The plant WNK gene family and regulation of flowering time in <i>Arabidopsis</i> . Plant Biology, 2008, 10, 548-562.	3.8	88