Gudrun Antoons

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5194038/publications.pdf

Version: 2024-02-01

218677 265206 1,867 42 52 26 h-index citations g-index papers 53 53 53 2506 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cellular contribution to left and right atrial dysfunction in chronic arterial hypertension in pigs. ESC Heart Failure, 2021, 8, 151-161.	3.1	6
2	Metabolic Interventions to Prevent Hypertrophy-Induced Alterations in Contractile Properties In Vitro. International Journal of Molecular Sciences, 2021, 22, 3620.	4.1	4
3	Augmenting Vacuolar H+-ATPase Function Prevents Cardiomyocytes from Lipid-Overload Induced Dysfunction. International Journal of Molecular Sciences, 2020, 21, 1520.	4.1	19
4	Inotropic effect of NCX inhibition depends on the relative activity of the reverse NCX assessed by a novel inhibitor ORM-10962 on canine ventricular myocytes. European Journal of Pharmacology, 2018, 818, 278-286.	3 . 5	10
5	Arrhythmogenic Mechanisms in Heart Failure: Linking \hat{l}^2 -Adrenergic Stimulation, Stretch, and Calcium. Frontiers in Physiology, 2018, 9, 1453.	2.8	57
6	Arterial hypertension drives arrhythmia progression via specific structural remodeling in a porcine model of atrial fibrillation. Heart Rhythm, 2018, 15, 1328-1336.	0.7	19
7	The Subcellular Distribution of Ryanodine Receptors and L-Type Ca2+ Channels Modulates Ca2+-Transient Properties and Spontaneous Ca2+-Release Events in Atrial Cardiomyocytes. Frontiers in Physiology, 2018, 9, 1108.	2.8	29
8	Palmitate-Induced Vacuolar-Type H+-ATPase Inhibition Feeds Forward Into Insulin Resistance and Contractile Dysfunction. Diabetes, 2017, 66, 1521-1534.	0.6	50
9	Mechanosensitivity of microdomain calcium signalling in the heart. Progress in Biophysics and Molecular Biology, 2017, 130, 288-301.	2.9	17
10	A two dimensional electromechanical model of a cardiomyocyte to assess intra-cellular regional mechanical heterogeneities. PLoS ONE, 2017, 12, e0182915.	2.5	5
11	Novel pathomechanisms of cardiomyocyte dysfunction in a model of heart failure with preserved ejection fraction. European Journal of Heart Failure, 2016, 18, 987-997.	7.1	53
12	Potassium Channel Interacting Protein 2 (KChIP2) is not a transcriptional regulator of cardiac electrical remodeling. Scientific Reports, 2016, 6, 28760.	3.3	3
13	A porcine model of early atrial fibrillation using a custom-built, radio transmission-controlled pacemaker. Journal of Electrocardiology, 2016, 49, 124-131.	0.9	8
14	Calcium release near l-type calcium channels promotes beat-to-beat variability in ventricular myocytes from the chronic AV block dog. Journal of Molecular and Cellular Cardiology, 2015, 89, 326-334.	1.9	22
15	TRPC3 contributes to regulation of cardiac contractility and arrhythmogenesis by dynamic interaction with NCX1. Cardiovascular Research, 2015, 106, 163-173.	3.8	69
16	The European Network for Translational Research in Atrial Fibrillation (EUTRAF): objectives and initial results. Europace, 2015, 17, 1457-1466.	1.7	8
17	Wnt-11 Signaling in Cardiomyocytes. Biophysical Journal, 2014, 106, 115a.	0.5	O
18	FKBP12.6 overexpression does not protect against remodelling after myocardial infarction. Experimental Physiology, 2013, 98, 134-148.	2.0	6

#	Article	IF	Citations
19	Remodelling of the Cardiac NCX1-TRPC3 Signaling Complex Promotes Angiotensin Ii-Induced Arrhythmogenesis. Biophysical Journal, 2013, 104, 294a.	0.5	o
20	Intracellular Dyssynchrony of Diastolic Cytosolic [Ca ²⁺] Decay in Ventricular Cardiomyocytes in Cardiac Remodeling and Human Heart Failure. Circulation Research, 2013, 113, 527-538.	4.5	50
21	T-Tubule Remodelling and Ryanodine Receptor Organization Modulate Sodium-Calcium Exchange. Advances in Experimental Medicine and Biology, 2013, 961, 375-383.	1.6	12
22	TRPC3 Channels in Angiotensin II-Induced Calcium- Dependent Arrhythmias in Mouse and Human Cardiomyocytes. Biophysical Journal, 2013, 104, 434a.	0.5	0
23	Combined Na + /Ca 2+ Exchanger and L-Type Calcium Channel Block as a Potential Strategy to Suppress Arrhythmias and Maintain Ventricular Function. Circulation: Arrhythmia and Electrophysiology, 2013, 6, 371-379.	4.8	44
24	Selective Modulation of Coupled Ryanodine Receptors During Microdomain Activation of Calcium/Calmodulin-Dependent Kinase II in the Dyadic Cleft. Circulation Research, 2013, 113, 1242-1252.	4.5	37
25	Increased sarcolemmal Na+/H+ exchange activity in hypertrophied myocytes from dogs with chronic atrioventricular block. Frontiers in Physiology, 2013, 4, 322.	2.8	8
26	JTV519 (K201) reduces sarcoplasmic reticulum Ca ²⁺ leak and improves diastolic function ⟨i>in vitro in murine and human nonâ€failing myocardium. British Journal of Pharmacology, 2012, 167, 493-504.	5.4	49
27	Dataâ€based theoretical identification of subcellular calcium compartments and estimation of calcium dynamics in cardiac myocytes. Journal of Physiology, 2012, 590, 4423-4446.	2.9	10
28	Relevance of calmodulin/CaMKII activation for arrhythmogenesis in the AV block dog. Heart Rhythm, 2012, 9, 1875-1883.e2.	0.7	14
29	Connexin mimetic peptides inhibit Cx43 hemichannel opening triggered by voltage and intracellular Ca2+ elevation. Basic Research in Cardiology, 2012, 107, 304.	5.9	132
30	Alternative strategies in arrhythmia therapy: Evaluation of Na/Ca exchange as an anti-arrhythmic target., 2012, 134, 26-42.		56
31	Microvolt T-wave alternans and beat-to-beat variability of repolarization during early postischemic remodeling in a pig heart. Heart Rhythm, 2011, 8, 1050-1057.	0.7	14
32	Pharmacological modulation of connexinâ€formed channels in cardiac pathophysiology. British Journal of Pharmacology, 2011, 163, 469-483.	5.4	75
33	Microdomain [Ca ²⁺] near ryanodine receptors as reported by Lâ€type Ca ²⁺ and Na ⁺ /Ca ²⁺ exchange currents. Journal of Physiology, 2011, 589, 2569-2583.	2.9	70
34	Drug-Induced Torsade de Pointes Arrhythmias in the Chronic AV Block Dog Are Perpetuated by Focal Activity. Circulation: Arrhythmia and Electrophysiology, 2011, 4, 566-576.	4.8	41
35	The antiâ€protozoal drug pentamidine blocks K _{lR} 2.xâ€mediated inward rectifier current by entering the cytoplasmic pore region of the channel. British Journal of Pharmacology, 2010, 159, 1532-1541.	5.4	42
36	Robust antiâ€arrhythmic efficacy of verapamil and flunarizine against dofetilideâ€induced TdP arrhythmias is based upon a shared and a different mode of action. British Journal of Pharmacology, 2010, 161, 162-175.	5.4	31

#	Article	IF	CITATIONS
37	Repolarization variability and early afterdepolarizations in long QT syndrome type 2: Is labile calcium the common denominator?. Heart Rhythm, 2010, 7, 1695-1696.	0.7	0
38	Late Na+Current Inhibition by Ranolazine Reduces Torsades de Pointes in the Chronic Atrioventricular Block Dog Model. Journal of the American College of Cardiology, 2010, 55, 801-809.	2.8	86
39	Dofetilide as Activator of Na/Ca Exchange: New Perspectives on an â€ [~] Oldâ€ [™] Drug. Cardiovascular Drugs and Therapy, 2009, 23, 189-192.	2.6	2
40	Dynamic Changes Of Local Ca Sensed By Ca-dependent Currents In Cardiac Myocytes. Biophysical Journal, 2009, 96, 274a.	0.5	0
41	Dominant arrhythmia vulnerability of the right ventricle in senescent mice. Heart Rhythm, 2008, 5, 438-448.	0.7	55
42	Targeting calcium handling in arrhythmias. Europace, 2008, 10, 1364-1369.	1.7	35
43	Crosstalk between L-type Ca2+ channels and the sarcoplasmic reticulum: alterations during cardiac remodelling. Cardiovascular Research, 2007, 77, 315-324.	3.8	63
44	Window Ca2+current and its modulation by Ca2+release in hypertrophied cardiac myocytes from dogs with chronic atrioventricular block. Journal of Physiology, 2007, 579, 147-160.	2.9	58
45	Cellular basis for triggered ventricular arrhythmias that occur in the setting of compensated hypertrophy and heart failure: considerations for diagnosis and treatment. Journal of Electrocardiology, 2007, 40, S8-S14.	0.9	35
46	Na/Ca Exchange and Cardiac Ventricular Arrhythmias. Annals of the New York Academy of Sciences, 2007, 1099, 339-348.	3.8	63
47	Increased phospholamban phosphorylation limits theÂforce–frequency response inÂtheÂMLP–/– mouse with heart failure. Journal of Molecular and Cellular Cardiology, 2006, 40, 350-360.	1.9	18
48	Temporal patterns of electrical remodeling in canine ventricular hypertrophy: Focus on IKs downregulation and blunted \hat{l}^2 -adrenergic activation. Cardiovascular Research, 2006, 72, 90-100.	3.8	54
49	Ca 2+ Uptake by the Sarcoplasmic Reticulum in Ventricular Myocytes of the SERCA2 b/b Mouse Is Impaired at Higher Ca 2+ Loads Only. Circulation Research, 2003, 92, 881-887.	4.5	26
50	Spatial and Temporal Inhomogeneities During Ca 2+ Release From the Sarcoplasmic Reticulum in Pig Ventricular Myocytes. Circulation Research, 2002, 91, 1023-1030.	4.5	100
51	Mechanisms Underlying the Frequency Dependence of Contraction and [Ca 2+] i Transients in Mouse Ventricular Myocytes. Journal of Physiology, 2002, 543, 889-898.	2.9	109
52	Replacement of the Muscle-Specific Sarcoplasmic Reticulum Ca 2+ -ATPase Isoform SERCA2a by the Nonmuscle SERCA2b Homologue Causes Mild Concentric Hypertrophy and Impairs Contraction-Relaxation of the Heart. Circulation Research, 2001, 89, 838-846.	4.5	93