Harald Sontheimer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5193054/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sulfasalazine decreases astrogliosisâ€mediated seizure burden. Epilepsia, 2022, 63, 844-854.	5.1	5
2	Astrocyte plasticity in mice ensures continued endfoot coverage of cerebral blood vessels following injury and declines with age. Nature Communications, 2022, 13, 1794.	12.8	29
3	Shared Mechanisms of Disease. , 2021, , 385-414.		0
4	Thermally Drawn Stretchable Electrical and Optical Fiber Sensors for Multimodal Extreme Deformation Sensing. Advanced Optical Materials, 2021, 9, 2001815.	7.3	31
5	Reactive astrocyte nomenclature, definitions, and future directions. Nature Neuroscience, 2021, 24, 312-325.	14.8	1,098
6	Nano-optoelectrodes Integrated with Flexible Multifunctional Fiber Probes by High-Throughput Scalable Fabrication. ACS Applied Materials & Interfaces, 2021, 13, 9156-9165.	8.0	13
7	Dysregulation of Ambient Glutamate and Glutamate Receptors in Epilepsy: An Astrocytic Perspective. Frontiers in Neurology, 2021, 12, 652159.	2.4	19
8	Neuroscience: The New English Major?. Neuroscientist, 2021, , 107385842110039.	3.5	0
9	Antiepileptogenesis and disease modification: Progress, challenges, and the path forward—Report of the Preclinical Working Group of the 2018 NINDSâ€sponsored antiepileptogenesis and disease modification workshop. Epilepsia Open, 2021, 6, 276-296.	2.4	24
10	Perineuronal Net Dynamics in the Pathophysiology of Epilepsy. Epilepsy Currents, 2021, 21, 273-281.	0.8	25
11	Using Zebrafish to Elucidate Glial-Vascular Interactions During CNS Development. Frontiers in Cell and Developmental Biology, 2021, 9, 654338.	3.7	5
12	Development and implementation of a scalable and versatile test for COVID-19 diagnostics in rural communities. Nature Communications, 2021, 12, 4400.	12.8	9
13	Seizure Disorders and Epilepsy. , 2021, , 51-77.		0
14	Fishing for Contact: Modeling Perivascular Glioma Invasion in the Zebrafish Brain. ACS Pharmacology and Translational Science, 2021, 4, 1295-1305.	4.9	11
15	Transcriptional Regulation of Amino Acid Transport in Glioblastoma Multiforme. Cancers, 2021, 13, 6169.	3.7	4
16	3D Printed Multiplexed Competitive Migration Assays with Spatially Programmable Release Sources. Advanced Biology, 2020, 4, 1900225.	3.0	4
17	Potassium and glutamate transport is impaired in scar-forming tumor-associated astrocytes. Neurochemistry International, 2020, 133, 104628.	3.8	24
18	Spatially expandable fiber-based probes as a multifunctional deep brain interface. Nature Communications, 2020, 11, 6115.	12.8	44

#	Article	IF	CITATIONS
19	Acetylcholine Receptor Activation as a Modulator of Glioblastoma Invasion. Cells, 2019, 8, 1203.	4.1	32
20	Process- and bio-inspired hydrogels for 3D bioprinting of soft free-standing neural and glial tissues. Biofabrication, 2019, 11, 025009.	7.1	70
21	Sulfasalazine decreases mouse cortical hyperexcitability. Epilepsia, 2019, 60, 1365-1377.	5.1	14
22	Neuron–glia interactions in the pathophysiology of epilepsy. Nature Reviews Neuroscience, 2019, 20, 282-297.	10.2	262
23	Protocol to Quantitatively Assess the Structural Integrity of Perineuronal Nets ex vivo. Bio-protocol, 2019, 9, e3234.	0.4	7
24	Combating malignant astrocytes: Strategies mitigating tumor invasion. Neuroscience Research, 2018, 126, 22-30.	1.9	11
25	Perineuronal nets decrease membrane capacitance of peritumoral fast spiking interneurons in a model of epilepsy. Nature Communications, 2018, 9, 4724.	12.8	129
26	Microphysiological Human Brain and Neural Systems-on-a-Chip: Potential Alternatives to Small Animal Models and Emerging Platforms for Drug Discovery and Personalized Medicine. Stem Cell Reviews and Reports, 2017, 13, 381-406.	5.6	96
27	Polymer Composite with Carbon Nanofibers Aligned during Thermal Drawing as a Microelectrode for Chronic Neural Interfaces. ACS Nano, 2017, 11, 6574-6585.	14.6	73
28	Peritumoral Epilepsyâ~†. , 2017, , .		1
29	A role for ion channels in perivascular glioma invasion. European Biophysics Journal, 2016, 45, 635-648.	2.2	41
30	Glia as drivers of abnormal neuronal activity. Nature Neuroscience, 2016, 19, 28-33.	14.8	152
31	GABAergic disinhibition and impaired KCC2 cotransporter activity underlie tumor-associated epilepsy. Glia, 2015, 63, 23-36.	4.9	117
32	Gliomaâ [~] †. , 2015, , .		1
33	Shared Mechanisms of Disease. , 2015, , 407-443.		0
34	SLC7A11 expression is associated with seizures and predicts poor survival in patients with malignant glioma. Science Translational Medicine, 2015, 7, 289ra86.	12.4	207
35	Reactive Astrogliosis Causes the Development of Spontaneous Seizures. Journal of Neuroscience, 2015, 35, 3330-3345.	3.6	224
36	Tumour cells on neighbourhood watch. Nature, 2015, 528, 49-50.	27.8	21

#	Article	IF	CITATIONS
37	A frightening thought: Neuronal activity enhances tumor growth. Cell Research, 2015, 25, 891-892.	12.0	6
38	Vascular amyloidosis impairs the gliovascular unit in a mouse model of Alzheimer's disease. Brain, 2015, 138, 3716-3733.	7.6	116
39	Ionic Channels in Gliaâ~†. , 2015, , .		0
40	A proinvasive role for the Ca ²⁺ â€activated K ⁺ channel KCa3.1 in malignant glioma. Glia, 2014, 62, 971-981.	4.9	84
41	Autocrine regulation of glioma cell proliferation via pH _e -sensitive K ⁺ channels. American Journal of Physiology - Cell Physiology, 2014, 306, C493-C505.	4.6	10
42	KCa3.1 Modulates Neuroblast Migration Along the Rostral Migratory Stream (RMS) In Vivo. Cerebral Cortex, 2014, 24, 2388-2400.	2.9	29
43	Glutamate transporters in the biology of malignant gliomas. Cellular and Molecular Life Sciences, 2014, 71, 1839-1854.	5.4	93
44	Bradykinin enhances invasion of malignant glioma into the brain parenchyma by inducing cells to undergo amoeboid migration. Journal of Physiology, 2014, 592, 5109-5127.	2.9	54
45	A neurocentric perspective on glioma invasion. Nature Reviews Neuroscience, 2014, 15, 455-465.	10.2	619
46	Cl ^{â^'} and K ⁺ channels and their role in primary brain tumour biology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130095.	4.0	87
47	Role of glutamate transporters in redox homeostasis of the brain. Neurochemistry International, 2014, 73, 181-191.	3.8	43
48	Disruption of astrocyte–vascular coupling and the blood–brain barrier by invading glioma cells. Nature Communications, 2014, 5, 4196.	12.8	427
49	Novel Therapeutic Approaches to Malignant Gliomas. , 2014, , 315-350.		0
50	Calcium entry via TRPC1 channels activates chloride currents in human glioma cells. Cell Calcium, 2013, 53, 187-194.	2.4	42
51	Involvement of tumor acidification in brain cancer pathophysiology. Frontiers in Physiology, 2013, 4, 316.	2.8	38
52	Bradykinin-Induced Chemotaxis of Human Gliomas Requires the Activation of K _{Ca} 3.1 and ClC-3. Journal of Neuroscience, 2013, 33, 1427-1440.	3.6	74
53	Kinase activation of ClC-3 accelerates cytoplasmic condensation during mitotic cell rounding. American Journal of Physiology - Cell Physiology, 2012, 302, C527-C538.	4.6	27
54	Differential role of IK and BK potassium channels as mediators of intrinsic and extrinsic apoptotic cell death. American Journal of Physiology - Cell Physiology, 2012, 303, C1070-C1078.	4.6	56

#	Article	IF	CITATIONS
55	Sulfasalazine for brain cancer fits. Expert Opinion on Investigational Drugs, 2012, 21, 575-578.	4.1	35
56	Human glioma cells induce hyperexcitability in cortical networks. Epilepsia, 2012, 53, 1360-1370.	5.1	95
57	Unique biology of gliomas: challenges and opportunities. Trends in Neurosciences, 2012, 35, 546-556.	8.6	67
58	Hypoxic preconditioning involves system Xcâ^' regulation in mouse neural stem cells. Stem Cell Research, 2012, 8, 285-291.	0.7	29
59	Inhibition of nuclear factor kappa-B signaling reduces growth in medulloblastoma in vivo. BMC Cancer, 2011, 11, 136.	2.6	25
60	Chemotaxis of MDCK-F cells toward fibroblast growth factor-2 depends on transient receptor potential canonical channel 1. Pflugers Archiv European Journal of Physiology, 2011, 461, 295-306.	2.8	26
61	Transient receptor potential canonical channels are essential for chemotactic migration of human malignant gliomas. Journal of Cellular Physiology, 2011, 226, 1879-1888.	4.1	109
62	Glutamate and the biology of gliomas. Glia, 2011, 59, 1181-1189.	4.9	246
63	Hydrodynamic Cellular Volume Changes Enable Glioma Cell Invasion. Journal of Neuroscience, 2011, 31, 17250-17259.	3.6	121
64	Bradykinin Promotes the Chemotactic Invasion of Primary Brain Tumors. Journal of Neuroscience, 2011, 31, 4858-4867.	3.6	167
65	Glutamate release by primary brain tumors induces epileptic activity. Nature Medicine, 2011, 17, 1269-1274.	30.7	405
66	With-No-Lysine Kinase 3 (WNK3) stimulates glioma invasion by regulating cell volume. American Journal of Physiology - Cell Physiology, 2011, 301, C1150-C1160.	4.6	59
67	Ion channels and tranporters in cancer. 2. Ion channels and the control of cancer cell migration. American Journal of Physiology - Cell Physiology, 2011, 301, C541-C549.	4.6	146
68	Glutamate and tumor-associated epilepsy. Oncotarget, 2011, 2, 823-824.	1.8	10
69	Biophysical Properties of Human Medulloblastoma Cells. Journal of Membrane Biology, 2010, 237, 59-69.	2.1	14
70	Erythropoietin-induced neuroprotection requires cystine glutamate exchanger activity. Brain Research, 2010, 1321, 88-95.	2.2	24
71	MAPK induces AQP1 expression in astrocytes following injury. Clia, 2010, 58, 209-217.	4.9	37
72	Disruption of transient receptor potential canonical channel 1 causes incomplete cytokinesis and slows the growth of human malignant gliomas. Glia, 2010, 58, 1145-1156.	4.9	73

#	Article	IF	CITATIONS
73	Inhibition of the Sodium-Potassium-Chloride Cotransporter Isoform-1 Reduces Clioma Invasion. Cancer Research, 2010, 70, 5597-5606.	0.9	115
74	Molecular Interaction and Functional Regulation of ClC-3 by Ca2+/Calmodulin-dependent Protein Kinase II (CaMKII) in Human Malignant Glioma. Journal of Biological Chemistry, 2010, 285, 11188-11196.	3.4	105
75	Hypoxia Increases the Dependence of Glioma Cells on Glutathione. Journal of Biological Chemistry, 2010, 285, 37716-37724.	3.4	80
76	Spinal cord injury causes a wide-spread, persistent loss of Kir4.1 and glutamate transporter 1: benefit of 17Â-oestradiol treatment. Brain, 2010, 133, 1013-1025.	7.6	68
77	Water permeability through aquaporin-4 is regulated by protein kinase C and becomes rate-limiting for glioma invasion. Neuroscience, 2010, 168, 971-981.	2.3	75
78	Chloride Transport in Glioma Growth and Cell Invasion. , 2010, , 519-529.		0
79	GLIA/ASTROCYTES Peritumoral Epilepsy. , 2009, , 401-408.		0
80	Ionic Channels in Glia. , 2009, , 237-247.		0
81	Glioma. , 2009, , 877-884.		2
82	Chloride Accumulation Drives Volume Dynamics Underlying Cell Proliferation and Migration. Journal of Neurophysiology, 2009, 101, 750-757.	1.8	124
83	Sulfasalazine inhibits the growth of primary brain tumors independent of nuclear factorâ€₽̂B. Journal of Neurochemistry, 2009, 110, 182-193.	3.9	73
84	Role of Ion Channels and Amino-Acid Transporters in the Biology of Astrocytic Tumors. , 2009, , 527-546.		1
85	(1R,3S)-1-Aminocyclopentane-1,3-dicarboxylic acid (RS-ACPD) reduces intracellular glutamate levels in astrocytes. Journal of Neurochemistry, 2008, 79, 756-766.	3.9	13
86	A role for glutamate in growth and invasion of primary brain tumors. Journal of Neurochemistry, 2008, 105, 287-295.	3.9	170
87	Functional implications for Kir4.1 channels in glial biology: from K ⁺ buffering to cell differentiation. Journal of Neurochemistry, 2008, 107, 589-601.	3.9	274
88	ClC3 Is a Critical Regulator of the Cell Cycle in Normal and Malignant Glial Cells. Journal of Neuroscience, 2008, 28, 9205-9217.	3.6	100
89	An Unexpected Role for Ion Channels in Brain Tumor Metastasis. Experimental Biology and Medicine, 2008, 233, 779-791.	2.4	204
90	Cytoplasmic condensation is both necessary and sufficient to induce apoptotic cell death. Journal of Cell Science, 2008, 121, 290-297.	2.0	64

#	Article	IF	CITATIONS
91	BK Channels Are Linked to Inositol 1,4,5-Triphosphate Receptors via Lipid Rafts. Journal of Biological Chemistry, 2007, 282, 31558-31568.	3.4	84
92	Cytoplasmic Volume Condensation Is an Integral Part of Mitosis. Cell Cycle, 2007, 6, 1613-1620.	2.6	90
93	Differential Distribution of Kir4.1 in Spinal Cord Astrocytes Suggests Regional Differences in K ⁺ Homeostasis. Journal of Neurophysiology, 2007, 98, 786-793.	1.8	80
94	Expression and function of water channels (aquaporins) in migrating malignant astrocytes. Glia, 2007, 55, 1034-1043.	4.9	148
95	Autocrine Glutamate Signaling Promotes Glioma Cell Invasion. Cancer Research, 2007, 67, 9463-9471.	0.9	279
96	Role of Kir4.1 channels in growth control of glia. Glia, 2007, 55, 1668-1679.	4.9	90
97	Extracellular glutamine is a critical modulator for regulatory volume increase in human glioma cells. Brain Research, 2007, 1144, 231-238.	2.2	24
98	Functional expression of Kir4.1 channels in spinal cord astrocytes. Glia, 2006, 53, 516-528.	4.9	103
99	Expression and function of calcium-activated potassium channels in human glioma cells. Glia, 2006, 54, 223-233.	4.9	142
100	Anion channels in astrocytes: Biophysics, pharmacology, and function. Clia, 2006, 54, 747-757.	4.9	110
101	A role for ion channels in glioma cell invasion. Neuron Clia Biology, 2006, 2, 39-49.	1.6	169
102	A role for ion channels in glioma cell invasion. Neuron Glia Biology, 2006, 2, 39-49.	1.6	111
103	Neuregulin-1 enhances survival of human astrocytic glioma cells. Glia, 2005, 51, 217-228.	4.9	45
104	Modulation of glioma BK channels via erbB2. Journal of Neuroscience Research, 2005, 81, 179-189.	2.9	23
105	Inhibition of Cystine Uptake Disrupts the Growth of Primary Brain Tumors. Journal of Neuroscience, 2005, 25, 7101-7110.	3.6	281
106	Ion Channels and Amino Acid Transporters Support the Growth and Invasion of Primary Brain Tumors. Molecular Neurobiology, 2004, 29, 61-72.	4.0	57
107	Mislocalization of Kir channels in malignant glia. Glia, 2004, 46, 63-73.	4.9	93
108	Biophysical and pharmacological characterization of hypotonically activated chloride currents in cortical astrocytes. Glia, 2004, 46, 419-436.	4.9	59

#	Article	IF	CITATIONS
109	Role for calciumâ€activated potassium channels (BK) in growth control of human malignant glioma cells. Journal of Neuroscience Research, 2004, 78, 224-234.	2.9	110
110	Current Transients Associated with BK Channels in Human Glioma Cells. Journal of Membrane Biology, 2003, 193, 201-213.	2.1	4
111	Malignant gliomas: perverting glutamate and ion homeostasis for selective advantage. Trends in Neurosciences, 2003, 26, 543-549.	8.6	113
112	Chlorotoxin Inhibits Glioma Cell Invasion via Matrix Metalloproteinase-2. Journal of Biological Chemistry, 2003, 278, 4135-4144.	3.4	362
113	Contribution of chloride channels to volume regulation of cortical astrocytes. American Journal of Physiology - Cell Physiology, 2003, 284, C1460-C1467.	4.6	44
114	Neuregulin-1 Enhances Motility and Migration of Human Astrocytic Glioma Cells. Journal of Biological Chemistry, 2003, 278, 20971-20978.	3.4	47
115	Expression of Voltage-Gated Chloride Channels in Human Glioma Cells. Journal of Neuroscience, 2003, 23, 5572-5582.	3.6	152
116	Modulation of Glutamatergic Transmission by Bergmann Glial Cells in Rat Cerebellum In Situ. Journal of Neurophysiology, 2003, 89, 979-988.	1.8	37
117	Genetic Ablation of Phosphatidylinositol Transfer Protein Function in Murine Embryonic Stem Cells. Molecular Biology of the Cell, 2002, 13, 739-754.	2.1	64
118	Modulation of glial glutamate transport through cell interactions with the extracellular matrix. International Journal of Developmental Neuroscience, 2002, 20, 209-217.	1.6	14
119	Cloning and Characterization of Glioma BK, a Novel BK Channel Isoform Highly Expressed in Human Glioma Cells. Journal of Neuroscience, 2002, 22, 1840-1849.	3.6	150
120	BK channels in human glioma cells have enhanced calcium sensitivity. Glia, 2002, 38, 281-291.	4.9	81
121	Chlorotoxin, a scorpion-derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin. Glia, 2002, 39, 162-173.	4.9	238
122	BK channels in human glioma cells have enhanced calcium sensitivity. Glia, 2002, 38, 281-291.	4.9	2
123	Inhibition of Glial Na+ and K+ Currents by Tamoxifen. Journal of Membrane Biology, 2001, 181, 125-135.	2.1	32
124	Electrophysiological Characteristics of Reactive Astrocytes in Experimental Cortical Dysplasia. Journal of Neurophysiology, 2001, 85, 1719-1731.	1.8	135
125	Volume-Activated Chloride Currents Contribute to the Resting Conductance and Invasive Migration of Human Glioma Cells. Journal of Neuroscience, 2001, 21, 7674-7683.	3.6	178
126	BK Channels in Human Glioma Cells. Journal of Neurophysiology, 2001, 85, 790-803.	1.8	113

#	Article	IF	CITATIONS
127	Reduced expression of connexin-43 and functional gap junction coupling in human gliomas. Glia, 2001, 33, 107-117.	4.9	140
128	Reactive astrocytes show enhanced inwardly rectifying K+ currents in situ. NeuroReport, 2000, 11, 3151-3155.	1.2	29
129	Role of lysophosphatidic acid and Rho in glioma cell motility. Cytoskeleton, 2000, 45, 185-199.	4.4	97
130	Ion channel expression by astrocytes in situ: Comparison of different CNS regions. , 2000, 30, 27-38.		80
131	Changes in ion channel expression accompany cell cycle progression of spinal cord astrocytes. , 2000, 30, 39-48.		146
132	Activityâ€dependent extracellular K + accumulation in rat optic nerve: the role of glial and axonal Na + pumps. Journal of Physiology, 2000, 522, 427-442.	2.9	179
133	Muscarinic Activation of BK Channels Induces Membrane Oscillations in Glioma Cells and Leads to Inhibition of Cell Migration. Journal of Membrane Biology, 2000, 176, 31-40.	2.1	47
134	Muscarinic Activation of BK Channels Induces Membrane Oscillations in Glioma Cells and Leads to Inhibition of Cell Migration. Journal of Membrane Biology, 2000, 176, 31-40.	2.1	55
135	Modulation of Kv1.5 Currents by Src Tyrosine Phosphorylation: Potential Role in the Differentiation of Astrocytes. Journal of Neuroscience, 2000, 20, 5245-5253.	3.6	72
136	Differential Inhibition of Glial K ⁺ Currents by 4-AP. Journal of Neurophysiology, 1999, 82, 3476-3487.	1.8	35
137	Modulation of Glioma Cell Migration and Invasion Using Cl ^{â^'} and K ⁺ Ion Channel Blockers. Journal of Neuroscience, 1999, 19, 5942-5954.	3.6	282
138	Compromised Glutamate Transport in Human Glioma Cells: Reduction–Mislocalization of Sodium-Dependent Glutamate Transporters and Enhanced Activity of Cystine–Glutamate Exchange. Journal of Neuroscience, 1999, 19, 10767-10777.	3.6	312
139	Recording of intracellular Ca2+, Clâ~, pH and membrane potential in cultured astrocytes using a fluorescence plate reader. Journal of Neuroscience Methods, 1999, 91, 73-81.	2.5	21
140	Metabotropic glutamate receptor agonists reduce glutamate release from cultured astrocytes. Glia, 1999, 25, 270-281.	4.9	37
141	Metabotropic glutamate receptor agonists reduce glutamate release from cultured astrocytes. Glia, 1999, 25, 270-81.	4.9	10
142	Glioma cells release excitotoxic concentrations of glutamate. Cancer Research, 1999, 59, 4383-91.	0.9	329
143	Astrocytes from Human Hippocampal Epileptogenic Foci Exhibit Action Potential-Like Responses. Epilepsia, 1998, 39, 347-354.	5.1	63
144	Lysophosphatidic acid stimulates actomyosin contraction in astrocytes. , 1998, 53, 343-352.		52

#	Article	IF	CITATIONS
145	Astrocytes protect neurons from neurotoxic injury by serum glutamate. , 1998, 22, 237-248.		93
146	Passive Glial Cells, Fact or Artifact?. Journal of Membrane Biology, 1998, 166, 213-222.	2.1	18
147	Properties of human glial cells associated with epileptic seizure foci. Epilepsy Research, 1998, 32, 286-303.	1.6	239
148	Expression of voltage-activated chloride currents in acute slices of human gliomas. Neuroscience, 1998, 83, 1161-1173.	2.3	92
149	Chapter 17 Glial glutamate transport as target for nitric oxide: consequences for neurotoxicity. Progress in Brain Research, 1998, 118, 241-251.	1.4	12
150	Spinal Cord Astrocytes Display a Switch From TTX-Sensitive to TTX-Resistant Sodium Currents After Injury-Induced Gliosis In Vitro. Journal of Neurophysiology, 1998, 79, 2222-2226.	1.8	17
151	Electrophysiological Properties of Human Astrocytic Tumor Cells In Situ: Enigma of Spiking Glial Cells. Journal of Neurophysiology, 1998, 79, 2782-2793.	1.8	97
152	Use of chlorotoxin for targeting of primary brain tumors. Cancer Research, 1998, 58, 4871-9.	0.9	164
153	Postnatal Development of Ionic Currents in Rat Hippocampal Astrocytes In Situ. Journal of Neurophysiology, 1997, 78, 461-477.	1.8	150
154	Electrophysiological Changes That Accompany Reactive Gliosis <i>In Vitro</i> . Journal of Neuroscience, 1997, 17, 7316-7329.	3.6	118
155	Cell cycle-dependent expression of a glioma-specific chloride current: proposed link to cytoskeletal changes. American Journal of Physiology - Cell Physiology, 1997, 273, C1290-C1297.	4.6	101
156	Bovine serum albumin and lysophosphatidic acid stimulate calcium mobilization and reversal of cAMP-induced stellation in rat spinal cord astrocytes. Glia, 1997, 20, 163-172.	4.9	46
157	Spontaneous intracellular calcium oscillations in cortical astrocytes from a patient with intractable childhood epilepsy (Rasmussen's Encephalitis). Glia, 1997, 21, 332-337.	4.9	43
158	Ion channel expression and function in astrocytic scars. , 1997, , 101-113.		1
159	Voltage-gated Na+ channels in glia: properties and possible functions. Trends in Neurosciences, 1996, 19, 325-331.	8.6	117
160	Biophysical and pharmacological characterization of chloride currents in human astrocytoma cells. American Journal of Physiology - Cell Physiology, 1996, 270, C1511-C1521.	4.6	76
161	Astrocytic inwardly rectifying potassium currents are dependent on external sodium ions. Journal of Neurophysiology, 1996, 76, 626-630.	1.8	40
162	Cytokine modulation of glial glutamate uptake. NeuroReport, 1996, 7, 2181-2185.	1.2	196

#	Article	IF	CITATIONS
163	Human astrocytoma cells express a unique chloride current. NeuroReport, 1996, 7, 1020-1024.	1.2	48
164	Manipulation of the delayed rectifier Kv1.5 potassium channel in glial cells by antisense oligodeoxynucleotides. Glia, 1996, 18, 177-184.	4.9	47
165	Human epileptic astrocytes exhibit increased gap junction coupling. Glia, 1995, 15, 195-202.	4.9	121
166	Biophysical and pharmacological characterization of inwardly rectifying K+ currents in rat spinal cord astrocytes. Journal of Neurophysiology, 1995, 73, 333-346.	1.8	199
167	Review : Clial Neuronal Interactions: A Physiological Perspective. Neuroscientist, 1995, 1, 328-337.	3.5	16
168	βâ€Adrenergic Modulation of Glial Inwardly Rectifying Potassium Channels. Journal of Neurochemistry, 1995, 64, 1576-1584.	3.9	52
169	The oligodendrocyte, the perinodal astrocyte, and the central node of Ranvier. , 1995, , 116-143.		6
170	Astrocyte Na+ channels are required for maintenance of Na+/K(+)-ATPase activity. Journal of Neuroscience, 1994, 14, 2464-2475.	3.6	139
171	Rat hippocampal astrocytes exhibit electrogenic sodium-bicarbonate co-transport. Journal of Neurophysiology, 1994, 72, 2580-2589.	1.8	50
172	Voltage-dependent ion channels in glial cells. Glia, 1994, 11, 156-172.	4.9	256
173	Astrocytes exhibit regional specificity in gap-junction coupling. Glia, 1994, 11, 315-325.	4.9	125
174	Fibrous and protoplasmic astrocytes express GABAA receptors that differ in benzodiazepine pharmacology. Brain Research, 1994, 636, 73-80.	2.2	23
175	Sodium channel mRNAs in cultured spinal cord astrocytes: in situ hybridization in identified cell types. Molecular Brain Research, 1994, 23, 235-245.	2.3	55
176	Reduction of glial proliferation by K+ channel blockers is mediated by changes in pHi. NeuroReport, 1994, 6, 193-196.	1.2	85
177	Spinal cord astrocytes in vitro: Phenotypic diversity and sodium channel immunoreactivity. Glia, 1993, 7, 272-285.	4.9	44
178	Action potential conduction and sodium channel content in the optic nerve of the myelin-deficient rat. Proceedings of the Royal Society B: Biological Sciences, 1993, 254, 245-250.	2.6	13
179	Expression of voltage-activated ion channels by astrocytes and oligodendrocytes in the hippocampal slice. Journal of Neurophysiology, 1993, 70, 1863-1873.	1.8	128
180	Ion channels in spinal cord astrocytes in vitro. III. Modulation of channel expression by coculture with neurons and neuron-conditioned medium. Journal of Neurophysiology, 1993, 69, 819-831.	1.8	52

#	Article	IF	CITATIONS
181	Differential modulation of TTX-sensitive and TTX-resistant Na+ channels in spinal cord astrocytes following activation of protein kinase C. Journal of Neuroscience, 1993, 13, 4889-4897.	3.6	45
182	Chapter 8: The expression of sodium channels in astrocytes in situ and in vitro. Progress in Brain Research, 1992, 94, 89-107.	1.4	9
183	The Neurophysiology of Glial Cells. Journal of Clinical Neurophysiology, 1992, 9, 224-252.	1.7	88
184	Astrocytes, as well as neurons, express a diversity of ion channels. Canadian Journal of Physiology and Pharmacology, 1992, 70, S223-S238.	1.4	51
185	Different Na+ currents in PO- and P7-derived hippocampal astrocytes in vitro: evidence for a switch in Na+ channel expression in vivo. Brain Research, 1992, 597, 24-29.	2.2	20
186	Ion channels in spinal cord astrocytes in vitro. II. Biophysical and pharmacological analysis of two Na+ current types. Journal of Neurophysiology, 1992, 68, 1001-1011.	1.8	110
187	Ion channels in spinal cord astrocytes in vitro. I. Transient expression of high levels of Na+ and K+ channels. Journal of Neurophysiology, 1992, 68, 985-1000.	1.8	122
188	Sodium channel expression in optic nerve astrocytes chronically deprived of axonal contact. Glia, 1992, 6, 19-29.	4.9	33
189	Cell Coupling Is Restricted to Subpopulations of Astrocytes Cultured from Rat Hippocampus and Optic Nerve. Annals of the New York Academy of Sciences, 1991, 633, 592-596.	3.8	4
190	Relationship between Na+ current expression and cell-cell coupling in astrocytes cultured from rat hippocampus. Journal of Neurophysiology, 1991, 65, 989-1002.	1.8	41
191	Na(+)-current expression in rat hippocampal astrocytes in vitro: alterations during development. Journal of Neurophysiology, 1991, 65, 3-19.	1.8	108
192	The Neural Cell Adhesion Molecule (N-CAM) Modulates K+ Channels in Cultured Glial Precursor Cells. European Journal of Neuroscience, 1991, 3, 230-236.	2.6	21
193	Two types of Na+-currents in cultured rat optic nerve astrocytes: Changes with time in culture and with age of culture derivation. Journal of Neuroscience Research, 1991, 30, 275-287.	2.9	51
194	Specificity of cell-cell coupling in rat optic nerve astrocytes in vitro Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 9833-9837.	7.1	47
195	Differential benzodiazepine pharmacology of mammalian recombinant GABAA receptors. Neuroscience Letters, 1990, 115, 269-273.	2.1	82
196	Glial cells of the oligodendrocyte lineage express proton-activated Na+ channels. Journal of Neuroscience Research, 1989, 24, 496-500.	2.9	33
197	Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature, 1989, 338, 582-585.	27.8	1,272
198	Channel expression correlates with differentiation stage during the development of Oligodendrocytes from their precursor cells in culture. Neuron, 1989, 2, 1135-1145.	8.1	247

#	Article	IF	CITATIONS
199	Functional chloride channels by mammalian cell expression of rat glycine receptor subunit. Neuron, 1989, 2, 1491-1497.	8.1	171
200	Sequence and expression of human GABAA receptor $\hat{I}\pm 1$ and \hat{I}^21 subunits. FEBS Letters, 1989, 244, 361-364.	2.8	97
201	Two novel GABAA receptor subunits exist in distinct neuronal subpopulations. Neuron, 1989, 3, 327-337.	8.1	528
202	Glutamate opens Na+/K+ channels in cultured astrocytes. Glia, 1988, 1, 328-336.	4.9	198
203	Heterogeneity of potassium currents in cultured oligodendrocytes. Clia, 1988, 1, 415-420.	4.9	56
204	Transient expression shows ligand gating and allosteric potentiation of GABAA receptor subunits. Science, 1988, 242, 1306-1308.	12.6	240
205	The Role of Ion Channels in the Etiology and Development of Gliomas. , 0, , 105-126.		0