Subash Adhikari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5190132/publications.pdf

Version: 2024-02-01

687363 839539 1,119 18 13 18 citations h-index g-index papers 18 18 18 2583 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nanomaterials for diagnostic, treatment and prevention of COVID-19. Applied Science and Technology Annals, 2020, 1, 155-164.	0.7	25
2	Bandgap Renormalization in Monolayer MoS ₂ on CsPbBr ₃ Quantum Dots via Charge Transfer at Room Temperature. Advanced Materials Interfaces, 2020, 7, 2000835.	3.7	8
3	Transfer assembly for two-dimensional van der Waals heterostructures. 2D Materials, 2020, 7, 022005.	4.4	87
4	Carrier multiplication in van der Waals layered transition metal dichalcogenides. Nature Communications, 2019, 10, 5488.	12.8	41
5	Minimizing Trap Charge Density towards an Ideal Diode in Graphene–Silicon Schottky Solar Cell. ACS Applied Materials & Diode in Graphene†Silicon Schottky Solar Cell. ACS Applied Materials & Diode in Graphene†Silicon Schottky Solar Cell. ACS Applied Materials & Diode in Graphene†Silicon Schottky Solar Cell. ACS Applied Materials & Diode in Graphene†Silicon Schottky Solar Cell. ACS Applied Materials & Diode in Graphene†Silicon Schottky Solar Cell. ACS Applied Materials & Diode in Graphene†Silicon Schottky Solar Cell. ACS Applied Materials & Diode in Graphene†Silicon Schottky Solar Cell. ACS Applied Materials & Diode in Graphene†Silicon Schottky Solar Cell. ACS Applied Materials & Diode in Graphene†Silicon Schottky Solar Cell. ACS Applied Materials & Diode in Graphene†Silicon Schottky Solar Cell. ACS Applied Materials & Diode in Graphene†Silicon Schottky Solar Cell. ACS Applied Materials & Diode in Graphene†Silicon Schottky Solar Cell. ACS Applied Materials & Diode in Graphene Silicon Schottky Solar Cell. ACS Applied Silic	8.0	15
6	Local Enhancement of Exciton Emission of Monolayer MoS ₂ by Copper Phthalocyanine Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 6794-6800.	3.1	19
7	Charge Transport in MoS ₂ /WSe ₂ van der Waals Heterostructure with Tunable Inversion Layer. ACS Nano, 2017, 11, 3832-3840.	14.6	175
8	Photocurrent Switching of Monolayer MoS ₂ Using a Metal–Insulator Transition. Nano Letters, 2017, 17, 673-678.	9.1	31
9	A Highâ€On/Offâ€Ratio Floatingâ€Gate Memristor Array on a Flexible Substrate via CVDâ€Grown Largeâ€Area 2D Layer Stacking. Advanced Materials, 2017, 29, 1703363.	21.0	116
10	Memristors: A Highâ€On/Offâ€Ratio Floatingâ€Gate Memristor Array on a Flexible Substrate via CVDâ€Grown Largeâ€Area 2D Layer Stacking (Adv. Mater. 44/2017). Advanced Materials, 2017, 29, .	21.0	1
11	Determining the Fermi level by absorption quenching of monolayer graphene by charge transfer doping. Nanoscale, 2016, 8, 18710-18717.	5.6	16
12	Deprotonated curcumin as a simple and quick available natural dye for dye sensitized solar cells. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 183-189.	2.3	7
13	Electrochemical protonation/de-protonation of titania nanotubes decorated with silver phosphate crystals: An enhanced electrochromic color contrast. Optical Materials, 2015, 40, 112-117.	3.6	10
14	Leaf Veinâ€Inspired Nanochanneled Graphene Film for Highly Efficient Microâ€Supercapacitors. Advanced Energy Materials, 2015, 5, 1500003.	19.5	69
15	Titania nanotube-silver phosphate hybrid heterostructure for improved visible light induced photocatalysis. Chemical Physics Letters, 2014, 593, 193-197.	2.6	23
16	Ferromagnetism in MnX2 (X = S, Se) monolayers. Physical Chemistry Chemical Physics, 2014, 16, 4990.	2.8	199
17	ZnO Nanowire Arrays on 3D Hierachical Graphene Foam: Biomarker Detection of Parkinson's Disease. ACS Nano, 2014, 8, 1639-1646.	14.6	275
18	Growth of Copper Indium Telluride (Cuinte2) Thin Films Using Electrochemical Route for Photovoltaic Application. Nepal Journal of Science and Technology, 2012, 12, 318-323.	0.2	2