Yan Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5189897/publications.pdf

Version: 2024-02-01

331670 377865 1,520 38 21 34 citations h-index g-index papers 40 40 40 1362 docs citations citing authors all docs times ranked

#	Article	IF	Citations
1	Quantitative blood flow estimation in vivo by optical speckle image velocimetry. Optica, 2021, 8, 1092.	9.3	21
2	An open-source, accurate, and iterative calibration method for liquid-crystal-based spatial light modulators. Optics Communications, 2021, 495, 127108.	2.1	2
3	Quantitative blood flow estimation in vivo by optical speckle image velocimetry: publisher's note. Optica, 2021, 8, 1326.	9.3	2
4	Self-Fluence-Compensated Functional Photoacoustic Microscopy. IEEE Transactions on Medical Imaging, 2021, 40, 3856-3866.	8.9	14
5	Cone photoreceptor dysfunction in retinitis pigmentosa revealed by optoretinography. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	45
6	Fluorescence imaging through dynamic scattering media with speckle-encoded ultrasound-modulated light correlation. Nature Photonics, 2020, 14, 511-516.	31.4	38
7	Fighting against Fast Speckle Decorrelation for Light Focusing inside Live Tissue by Photon Frequency Shifting. ACS Photonics, 2020, 7, 837-844.	6.6	11
8	Investigating ultrasound–light interaction in scattering media. Journal of Biomedical Optics, 2020, 25, 1.	2.6	9
9	Imaging through highly scattering human skulls with ultrasound-modulated optical tomography. Optics Letters, 2020, 45, 2973.	3.3	11
10	Focusing light inside live tissue using reversibly switchable bacterial phytochrome as a genetically encoded photochromic guide star. Science Advances, 2019, 5, eaay1211.	10.3	26
11	Wavefront shaping with disorder-engineered metasurfaces. Nature Photonics, 2018, 12, 84-90.	31.4	205
12	Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses. Journal of Biomedical Optics, 2018, 23, 1.	2.6	10
13	Time-reversed ultrasonically encoded (TRUE) focusing for deep-tissue optogenetic modulation. , 2018, , .		O
14	Optical focusing through biological tissue and tissue-mimicking phantoms up to 9.6 centimeters thick with digital optical phase conjugation. Proceedings of SPIE, 2017, , .	0.8	0
15	Deep tissue optical focusing and optogenetic modulation with time-reversed ultrasonically encoded light. Science Advances, 2017, 3, eaao5520.	10.3	60
16	High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping. Applied Physics Letters, 2017, 111, 221109.	3.3	12
17	Focusing light through scattering media by polarization modulation based generalized digital optical phase conjugation. Applied Physics Letters, 2017, 111, 201108.	3.3	40
18	Sub-Nyquist sampling boosts targeted light transport through opaque scattering media. Optica, 2017, 4, 97.	9.3	27

#	Article	IF	CITATIONS
19	Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation. Optica, 2017, 4, 280.	9.3	127
20	Focusing light inside scattering media with magnetic-particle-guided wavefront shaping. Optica, 2017, 4, 1337.	9.3	40
21	In vivo study of optical speckle decorrelation time across depths in the mouse brain. Biomedical Optics Express, 2017, 8, 4855.	2.9	52
22	Focusing light through scattering media by transmission matrix inversion. Optics Express, 2017, 25, 27234.	3.4	51
23	Lock-in camera based heterodyne holography for ultrasound-modulated optical tomography inside dynamic scattering media. Applied Physics Letters, 2016, 108, 231106.	3.3	22
24	Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6Âcm in thickness with digital optical phase conjugation. Journal of Biomedical Optics, 2016, 21, 085001.	2.6	55
25	Bit-efficient, sub-millisecond wavefront measurement using a lock-in camera for time-reversal based optical focusing inside scattering media. Optics Letters, 2016, 41, 1321.	3.3	27
26	Focusing light through scattering media by full-polarization digital optical phase conjugation. Optics Letters, 2016, 41, 1130.	3.3	59
27	Single-exposure optical focusing inside scattering media using binarized time-reversed adapted perturbation. Optica, 2015, 2, 869.	9.3	42
28	Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light. Nature Communications, 2015, 6, 5904.	12.8	156
29	High-speed time-reversed ultrasonically encoded (TRUE) optical focusing inside dynamic scattering media at 793 nm., 2014, , .		2
30	High-Speed Time-Reversed Ultrasonically Encoded (TRUE) Optical Focusing in Dynamic Scattering Media at 793 nm., 2014,,.		2
31	Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media. Nature Photonics, 2014, 8, 931-936.	31.4	119
32	Sub-diffraction-limited imaging by photobleaching imprinting microscopy. , 2014, , .		0
33	Photobleaching imprinting microscopy: seeing clearer and deeper. Journal of Cell Science, 2013, 127, 288-94.	2.0	12
34	Calibration-free quantification of absolute oxygen saturation based on the dynamics of photoacoustic signals. Optics Letters, 2013, 38, 2800.	3.3	50
35	Quantitative evaluation of scattering in optical coherence tomography skin images using the extended Huygens–Fresnel theorem. Applied Optics, 2013, 52, 1574.	1.8	37
36	Single-cell photoacoustic thermometry. Journal of Biomedical Optics, 2013, 18, 026003.	2.6	60

#	Article	IF	CITATIONS
37	Optical sectioning by wide-field photobleaching imprinting microscopy. Applied Physics Letters, 2013, 103, 183703.	3.3	8
38	Effects of light scattering on optical-resolution photoacoustic microscopy. Journal of Biomedical Optics, 2012, 17, 126014.	2.6	64