
Suzanne Baker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5188006/publications.pdf Version: 2024-02-01

SUZANNE RAKED

#	Article	IF	CITATIONS
1	Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nature Genetics, 2012, 44, 251-253.	21.4	1,402
2	The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nature Genetics, 2014, 46, 444-450.	21.4	871
3	Integrated Molecular Meta-Analysis of 1,000 Pediatric High-Grade and Diffuse Intrinsic Pontine Glioma. Cancer Cell, 2017, 32, 520-537.e5.	16.8	716
4	Integrated Molecular Genetic Profiling of Pediatric High-Grade Gliomas Reveals Key Differences With the Adult Disease. Journal of Clinical Oncology, 2010, 28, 3061-3068.	1.6	558
5	Pten regulates neuronal soma size: a mouse model of Lhermitte-Duclos disease. Nature Genetics, 2001, 29, 404-411.	21.4	422
6	A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen human tumors. Nature Medicine, 2020, 26, 792-802.	30.7	381
7	The landscape of somatic mutations in epigenetic regulators across 1,000 paediatric cancer genomes. Nature Communications, 2014, 5, 3630.	12.8	342
8	Genetic alterations in uncommon low-grade neuroepithelial tumors: BRAF, FGFR1, and MYB mutations occur at high frequency and align with morphology. Acta Neuropathologica, 2016, 131, 833-845.	7.7	288
9	Genome-Wide Analyses Identify Recurrent Amplifications of Receptor Tyrosine Kinases and Cell-Cycle Regulatory Genes in Diffuse Intrinsic Pontine Glioma. Journal of Clinical Oncology, 2011, 29, 3999-4006.	1.6	286
10	Unique genetic and epigenetic mechanisms driving paediatric diffuse high-grade glioma. Nature Reviews Cancer, 2014, 14, 651-661.	28.4	241
11	Pediatric high-grade glioma: biologically and clinically in need of new thinking. Neuro-Oncology, 2017, 19, now101.	1.2	217
12	Histone H3.3 K27M Accelerates Spontaneous Brainstem Glioma and Drives Restricted Changes in Bivalent Gene Expression. Cancer Cell, 2019, 35, 140-155.e7.	16.8	194
13	Novel Oncogenic <i>PDGFRA</i> Mutations in Pediatric High-Grade Gliomas. Cancer Research, 2013, 73, 6219-6229.	0.9	189
14	Cell of Origin for Malignant Gliomas and Its Implication in Therapeutic Development. Cold Spring Harbor Perspectives in Biology, 2015, 7, a020610.	5.5	163
15	Infant High-Grade Gliomas Comprise Multiple Subgroups Characterized by Novel Targetable Gene Fusions and Favorable Outcomes. Cancer Discovery, 2020, 10, 942-963.	9.4	157
16	PTEN Enters the Nuclear Age. Cell, 2007, 128, 25-28.	28.9	143
17	Targeted Therapy for <i>BRAFV600E</i> Malignant Astrocytoma. Clinical Cancer Research, 2011, 17, 7595-7604.	7.0	143
18	St. Jude Cloud: A Pediatric Cancer Genomic Data-Sharing Ecosystem. Cancer Discovery, 2021, 11, 1082-1099	9.4	109

SUZANNE BAKER

#	Article	IF	CITATIONS
19	H3.3 K27M depletion increases differentiation and extends latency of diffuse intrinsic pontine glioma growth in vivo. Acta Neuropathologica, 2019, 137, 637-655.	7.7	85
20	Mouse models of human PIK3CA-related brain overgrowth have acutely treatable epilepsy. ELife, 2015, 4,	6.0	79
21	CICERO: a versatile method for detecting complex and diverse driver fusions using cancer RNA sequencing data. Genome Biology, 2020, 21, 126.	8.8	74
22	CONSERTING: integrating copy-number analysis with structural-variation detection. Nature Methods, 2015, 12, 527-530.	19.0	68
23	Structure and evolution of double minutes in diagnosis and relapse brain tumors. Acta Neuropathologica, 2019, 137, 123-137.	7.7	63
24	Cell-surface antigen profiling of pediatric brain tumors: B7-H3 is consistently expressed and can be targeted via local or systemic CAR T-cell delivery. Neuro-Oncology, 2021, 23, 999-1011.	1.2	63
25	Nonredundant Functions for Akt Isoforms in Astrocyte Growth and Gliomagenesis in an Orthotopic Transplantation Model. Cancer Research, 2011, 71, 4106-4116.	0.9	60
26	A Unified Nomenclature and Amino Acid Numbering for Human PTEN. Science Signaling, 2014, 7, pe15.	3.6	50
27	<i>Arid1a</i> inactivation in an <i>Apc</i> ―and <i>Pten</i> â€defective mouse ovarian cancer model enhances epithelial differentiation and prolongs survival. Journal of Pathology, 2016, 238, 21-30.	4.5	45
28	Patient-derived orthotopic xenografts of pediatric brain tumors: a St. Jude resource. Acta Neuropathologica, 2020, 140, 209-225.	7.7	45
29	The Genetic Signatures of Pediatric High-Grade Glioma: No Longer a One-Act Play. Seminars in Radiation Oncology, 2014, 24, 240-247.	2.2	43
30	Deep multiomics profiling of brain tumors identifies signaling networks downstream of cancer driver genes. Nature Communications, 2019, 10, 3718.	12.8	42
31	Clinical, imaging, and molecular analysis of pediatric pontine tumors lacking characteristic imaging features of DIPG. Acta Neuropathologica Communications, 2020, 8, 57.	5.2	32
32	Comprehensive molecular characterization of pediatric radiation-induced high-grade glioma. Nature Communications, 2021, 12, 5531.	12.8	31
33	Pax3 expression enhances PDGF-B-induced brainstem gliomagenesis and characterizes a subset of brainstem glioma. Acta Neuropathologica Communications, 2014, 2, 134.	5.2	27
34	Patient-derived models recapitulate heterogeneity of molecular signatures and drug response in pediatric high-grade glioma. Nature Communications, 2021, 12, 4089.	12.8	27
35	ChIPseqSpikeInFree: a ChIP-seq normalization approach to reveal global changes in histone modifications without spike-in. Bioinformatics, 2020, 36, 1270-1272.	4.1	25
36	RACK7 recognizes H3.3G34R mutation to suppress expression of MHC class II complex components and their delivery pathway in pediatric glioblastoma. Science Advances, 2020, 6, eaba2113.	10.3	25

SUZANNE BAKER

#	Article	IF	CITATIONS
37	Activated Mutant p110α Causes Endometrial Carcinoma in the Setting of Biallelic Pten Deletion. American Journal of Pathology, 2015, 185, 1104-1113.	3.8	24
38	Tumour-suppressor function in the nervous system. Nature Reviews Cancer, 2004, 4, 184-196.	28.4	23
39	Invited Review: Emerging functions of histone H3 mutations in paediatric diffuse highâ€grade gliomas. Neuropathology and Applied Neurobiology, 2020, 46, 73-85.	3.2	22
40	PTEN Signaling in the Postnatal Perivascular Progenitor Niche Drives Medulloblastoma Formation. Cancer Research, 2017, 77, 123-133.	0.9	20
41	CNS penetration of the CDK4/6 inhibitor ribociclib in non-tumor bearing mice and mice bearing pediatric brain tumors. Cancer Chemotherapy and Pharmacology, 2019, 84, 447-452.	2.3	19
42	Exploration of Coding and Non-coding Variants in Cancer Using GenomePaint. Cancer Cell, 2021, 39, 83-95.e4.	16.8	18
43	Epigenetically defined therapeutic targeting in H3.3G34R/V high-grade gliomas. Science Translational Medicine, 2021, 13, eabf7860.	12.4	18
44	H3-K27M-mutant nucleosomes interact with MLL1 to shape the glioma epigenetic landscape. Cell Reports, 2022, 39, 110836.	6.4	16
45	Knudson's hypothesis and theTP53 revolution. Genes Chromosomes and Cancer, 2003, 38, 329-329.	2.8	11
46	Rapid and fulminant leptomeningeal spread following radiotherapy in diffuse intrinsic pontine glioma. Pediatric Blood and Cancer, 2017, 64, e26416.	1.5	11
47	p53: a tumor suppressor hiding in plain sight. Journal of Molecular Cell Biology, 2019, 11, 536-538.	3.3	11
48	Defining Optimal Target Volumes of Conformal Radiation Therapy for Diffuse Intrinsic Pontine Glioma. International Journal of Radiation Oncology Biology Physics, 2020, 106, 838-847.	0.8	7
49	NTRK Fusions Can Co-Occur With H3K27M Mutations and May Define Druggable Subclones Within Diffuse Midline Gliomas. Journal of Neuropathology and Experimental Neurology, 2021, 80, 345-353.	1.7	5
50	First-in-pediatrics phase I study of crenolanib besylate (CP-868,596-26) administered during and after radiation therapy (RT) in newly diagnosed diffuse intrinsic pontine glioma (DIPG) and recurrent high-grade glioma (HGG) Journal of Clinical Oncology, 2014, 32, 10064-10064.	1.6	5
51	Phase I study using crenolanib to target PDGFR kinase in children and young adults with newly diagnosed DIPG or recurrent high-grade glioma, including DIPG. Neuro-Oncology Advances, 2021, 3, vdab179.	0.7	5
52	Engineering Inducible Knock-In Mice to Model Oncogenic Brain Tumor Mutations from Endogenous Loci. Methods in Molecular Biology, 2019, 1869, 207-230.	0.9	4
53	Somatic LINE-1 promoter acquisition drives oncogenic FOXR2 activation in pediatric brain tumor. Acta Neuropathologica, 2022, 143, 605-607.	7.7	4
54	Modelâ€based evaluation of imageâ€guided fractionated wholeâ€brain radiation therapy in pediatric diffuse intrinsic pontine glioma xenografts. CPT: Pharmacometrics and Systems Pharmacology, 2021, 10, 599-610.	2.5	3

SUZANNE BAKER

#	Article	IF	CITATIONS
55	Detecting PTEN and PI3K Signaling in Brain. Methods in Molecular Biology, 2016, 1388, 53-62.	0.9	3
56	Redefining p53: Entering the Tumor Suppressor Era. Cell Cycle, 2003, 2, 7-8.	2.6	2
57	ISDN2014_0157: Modeling human PIK3CAâ€related congenital brain overgrowth and epilepsy in mice. International Journal of Developmental Neuroscience, 2015, 47, 46-46.	1.6	1
58	Abstract 1543: Mining cancer-specific isoforms as CAR T-cell therapy targets for pediatric solid and brain tumors. , 2021, , .		1
59	Comprehensive molecular characterization of pediatric treatment-induced glioblastoma: Germline DNA repair defects as a potential etiology Journal of Clinical Oncology, 2018, 36, 10573-10573.	1.6	1
60	Abstract 2289: Empowering point-and-click genomic analysis with large pediatric genomic reference data on St. Jude Cloud. , 2021, , .		0
61	Abstract 237: Inferring spatial organization of tumor microenvironment from single-cell RNA sequencing data using graph embedding. , 2021, , .		Ο
62	Phase I study of erlotinib administered concurrently with and after irradiation (RT) in the treatment of children, adolescents, and young adults with newly diagnosed intracerebral high-grade glioma. Journal of Clinical Oncology, 2007, 25, 9553-9553.	1.6	0