
Andreas von Knethen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5186849/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antioxidants as Therapeutic Agents in Acute Respiratory Distress Syndrome (ARDS) Treatment—From Mice to Men. Biomedicines, 2022, 10, 98.	3.2	12
2	Persistently Elevated Plasma Concentrations of RIPK3, MLKL, HMGB1, and RIPK1 in Patients with COVID-19 in the Intensive Care Unit. American Journal of Respiratory Cell and Molecular Biology, 2022, 67, 405-408.	2.9	8
3	Phosphatidylserine Synthase PTDSS1 Shapes the Tumor Lipidome to Maintain Tumor-Promoting Inflammation. Cancer Research, 2022, 82, 1617-1632.	0.9	11
4	Macrophage-Derived Iron-Bound Lipocalin-2 Correlates with Renal Recovery Markers Following Sepsis-Induced Kidney Damage. International Journal of Molecular Sciences, 2020, 21, 7527.	4.1	20
5	Redox Regulation of PPAR <i>γ</i> in Polarized Macrophages. PPAR Research, 2020, 2020, 1-16.	2.4	10
6	Nrf2—A Molecular Target for Sepsis Patients in Critical Care. Biomolecules, 2020, 10, 1688.	4.0	13
7	Histone Deacetylation Inhibitors as Modulators of Regulatory T Cells. International Journal of Molecular Sciences, 2020, 21, 2356.	4.1	30
8	Macrophage S1PR1 Signaling Alters Angiogenesis and Lymphangiogenesis During Skin Inflammation. Cells, 2019, 8, 785.	4.1	16
9	Flow cytometry-based FRET identifies binding intensities in PPARÎ ³ 1 protein-protein interactions in living cells. Theranostics, 2019, 9, 5444-5463.	10.0	6
10	Structure optimization of a new class of PPARÎ ³ antagonists. Bioorganic and Medicinal Chemistry, 2019, 27, 115082.	3.0	4
11	Histone Deacetylation Inhibitors as Therapy Concept in Sepsis. International Journal of Molecular Sciences, 2019, 20, 346.	4.1	40
12	Sphingosine kinase 2 is a negative regulator of inflammatory macrophage activation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 1235-1246.	2.4	27
13	PD-L1 in the palm of your hand: palmitoylation as a target for immuno-oncology. Signal Transduction and Targeted Therapy, 2019, 4, 18.	17.1	9
14	Tolerizing CTL by Sustained Hepatic PD-L1 Expression Provides a New Therapy Approach in Mouse Sepsis. Theranostics, 2019, 9, 2003-2016.	10.0	13
15	Shooting three inflammatory targets with a single bullet: Novel multi-targeting anti-inflammatory glitazones. European Journal of Medicinal Chemistry, 2019, 167, 562-582.	5.5	33
16	Redox-signals and macrophage biology. Molecular Aspects of Medicine, 2018, 63, 70-87.	6.4	45
17	Lipocalin-2 abrogates epithelial cell cycle arrest by PPARÎ ³ inhibition. Laboratory Investigation, 2018, 98, 1408-1422.	3.7	12
18	Elevated intrathymic sphingosine-1-phosphate promotes thymus involution during sepsis. Molecular Immunology, 2017, 90, 255-263.	2.2	12

#	Article	IF	CITATIONS
19	Nrf2, the Master Regulator of Anti-Oxidative Responses. International Journal of Molecular Sciences, 2017, 18, 2772.	4.1	462
20	S1PR1 on tumor-associated macrophages promotes lymphangiogenesis and metastasis via NLRP3/IL-1β. Journal of Experimental Medicine, 2017, 214, 2695-2713.	8.5	216
21	MPGES-1-derived PGE2 suppresses CD80 expression on tumor-associated phagocytes to inhibit anti-tumor immune responses in breast cancer. Oncotarget, 2015, 6, 10284-10296.	1.8	48
22	ldentification and characterisation of a prototype for a new class of competitive PPARÎ ³ antagonists. European Journal of Pharmacology, 2015, 755, 16-26.	3.5	4
23	Loss of Nrf2 in bone marrow-derived macrophages impairs antigen-driven CD8+ T cell function by limiting CSH and Cys availability. Free Radical Biology and Medicine, 2015, 83, 77-88.	2.9	39
24	Activation of the peroxisome proliferator-activated receptor Î ³ counteracts sepsis-induced T cell cytotoxicity toward alloantigenic target cells. Journal of Molecular Medicine, 2015, 93, 633-644.	3.9	3
25	Contribution of Ninjurin1 to Toll-Like Receptor 4 Signaling and Systemic Inflammation. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 656-663.	2.9	40
26	Characterization of RA839, a Noncovalent Small Molecule Binder to Keap1 and Selective Activator of Nrf2 Signaling. Journal of Biological Chemistry, 2015, 290, 28446-28455.	3.4	78
27	Autophagy-dependent PELI3 degradation inhibits proinflammatory IL1B expression. Autophagy, 2014, 10, 1937-1952.	9.1	62
28	SYNCRIP-Dependent <i>Nox2</i> mRNA Destabilization Impairs ROS Formation in M2-Polarized Macrophages. Antioxidants and Redox Signaling, 2014, 21, 2483-2497.	5.4	35
29	5-Lipoxygenase contributes to PPARÎ ³ activation in macrophages in response to apoptotic cells. Cellular Signalling, 2013, 25, 2762-2768.	3.6	11
30	Redox Control of Inflammation in Macrophages. Antioxidants and Redox Signaling, 2013, 19, 595-637.	5.4	303
31	Macrophage activation by apoptotic cells. Bioinorganic Reaction Mechanisms, 2013, 9, .	0.4	0
32	PPARÎ ³ stabilizes HO-1 mRNA in monocytes/macrophages which affects IFN-Î ² expression. Free Radical Biology and Medicine, 2011, 51, 396-405.	2.9	18
33	Peroxisome Proliferator–activated Receptor γ–induced T Cell Apoptosis Reduces Survival during Polymicrobial Sepsis. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 64-74.	5.6	113
34	Casein-kinase-II-dependent phosphorylation of PPARγ provokes CRM1-mediated shuttling of PPARγ from the nucleus to the cytosol. Journal of Cell Science, 2010, 123, 192-201.	2.0	40
35	PPARÎ ³ 1 attenuates cytosol to membrane translocation of PKCα to desensitize monocytes/macrophages. Journal of Cell Biology, 2007, 176, 681-694.	5.2	76
36	Peroxisome proliferator-activated receptor γ (PPARγ) and sepsis. Archivum Immunologiae Et Therapiae Experimentalis, 2007, 55, 19-25.	2.3	30

#	Article	IF	CITATIONS
37	Apoptotic cells promote macrophage survival by releasing the antiapoptotic mediator sphingosine-1-phosphate. Blood, 2006, 108, 1635-1642.	1.4	230
38	Attenuation of macrophage apoptosis by the cAMP-signalling system. , 2000, 212, 35-43.		29
39	Nitric oxide (NO): an effector of apoptosis. Cell Death and Differentiation, 1999, 6, 969-975.	11.2	277
40	Etoposide and cisplatin induced apoptosis in activated RAW 264.7 macrophages is attenuated by cAMP-induced gene expression. Oncogene, 1998, 17, 387-394.	5.9	58
41	Cyclooxygenaseâ€2: an essential regulator of NOâ€mediated apoptosis. FASEB Journal, 1997, 11, 887-895.	0.5	128