George Eo Muscat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5186122/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Nuclear Receptor Nor-1 Is a Pleiotropic Regulator of Exercise-Induced Adaptations. Exercise and Sport Sciences Reviews, 2018, 46, 97-104.	3.0	13
2	Minireview: Therapeutic Implications of Epigenetic Signaling in Breast Cancer. Endocrinology, 2017, 158, en.2016-1716.	2.8	8
3	NFIB Mediates BRN2 Driven Melanoma Cell Migration and Invasion Through Regulation of EZH2 and MITF. EBioMedicine, 2017, 16, 63-75.	6.1	85
4	Transgenic Adipose-specific Expression of the Nuclear Receptor RORα Drives a Striking Shift in Fat Distribution and Impairs Glycemic Control. EBioMedicine, 2016, 11, 101-117.	6.1	5
5	The Nuclear Receptor, RORγ, Regulates Pathways Necessary for Breast Cancer Metastasis. EBioMedicine, 2016, 6, 59-72.	6.1	40
6	PRMT2 and RORÎ ³ Expression Are Associated With Breast Cancer Survival Outcomes. Molecular Endocrinology, 2014, 28, 1166-1185.	3.7	45
7	Breast cancer prognosis predicted by nuclear receptorâ€coregulator networks. Molecular Oncology, 2014, 8, 998-1013.	4.6	27
8	Nuclear Receptor Expression in Human Differentiated Thyroid Tumors. Thyroid, 2014, 24, 1000-1011.	4.5	16
9	Nuclear receptors and epigenetic signaling: Novel regulators of glycogen metabolism in skeletal muscle. IUBMB Life, 2013, 65, 657-664.	3.4	12
10	Distinct nuclear receptor expression in stroma adjacent to breast tumors. Breast Cancer Research and Treatment, 2013, 142, 211-223.	2.5	45
11	Disruption of Rorα1 and Cholesterol 25-Hydroxylase Expression Attenuates Phagocytosis in Male Rorαsg/sg Mice. Endocrinology, 2013, 154, 140-149.	2.8	19
12	Research Resource: Nuclear Receptors as Transcriptome: Discriminant and Prognostic Value in Breast Cancer. Molecular Endocrinology, 2013, 27, 350-365.	3.7	98
13	Transgenic Muscle-Specific Nor-1 Expression Regulates Multiple Pathways That Effect Adiposity, Metabolism, and Endurance. Molecular Endocrinology, 2013, 27, 1897-1917.	3.7	50
14	The NR4A2 Nuclear Receptor Is Recruited to Novel Nuclear Foci in Response to UV Irradiation and Participates in Nucleotide Excision Repair. PLoS ONE, 2013, 8, e78075.	2.5	36
15	Protein arginine methyltransferase 6-dependent gene expression and splicing: association with breast cancer outcomes. Endocrine-Related Cancer, 2012, 19, 509-526.	3.1	37
16	Retinoid-related orphan receptor alpha and the regulation of lipid homeostasis. Journal of Steroid Biochemistry and Molecular Biology, 2012, 130, 159-168.	2.5	33
17	Orphan Nuclear Receptors and the Regulation of Nutrient Metabolism: Understanding Obesity. Physiology, 2012, 27, 156-166.	3.1	26
18	<i>Ski</i> Overexpression in Skeletal Muscle Modulates Genetic Programs That Control Susceptibility to Dietâ€Induced Obesity and Insulin Signaling. Obesity, 2012, 20, 2157-2167.	3.0	14

GEORGE EO MUSCAT

#	Article	IF	CITATIONS
19	Caveolin-1 orchestrates the balance between glucose and lipid-dependent energy metabolism: Implications for liver regeneration. Hepatology, 2012, 55, 1574-1584.	7.3	82
20	The Nuclear Receptor, Nor-1, Markedly Increases Type II Oxidative Muscle Fibers and Resistance to Fatigue. Molecular Endocrinology, 2012, 26, 372-384.	3.7	75
21	Homozygous staggerer (sg/sg) mice display improved insulin sensitivity and enhanced glucose uptake in skeletal muscle. Diabetologia, 2011, 54, 1169-1180.	6.3	45
22	Nuclear Receptor Profiling of Ovarian Granulosa Cell Tumors. Hormones and Cancer, 2011, 2, 157-169.	4.9	46
23	Nr4a1 siRNA Expression Attenuates α-MSH Regulated Gene Expression in 3T3-L1 Adipocytes. Molecular Endocrinology, 2011, 25, 291-306.	3.7	20
24	Minireview: Nuclear Hormone Receptor 4A Signaling: Implications for Metabolic Disease. Molecular Endocrinology, 2010, 24, 1891-1903.	3.7	266
25	Identification and validation of the pathways and functions regulated by the orphan nuclear receptor, ROR alpha1, in skeletal muscle. Nucleic Acids Research, 2010, 38, 4296-4312.	14.5	51
26	An ERRβ/γ agonist modulates GRα expression, and glucocorticoid responsive gene expression in skeletal muscle cells. Molecular and Cellular Endocrinology, 2010, 315, 146-152.	3.2	28
27	Expression profiling of skeletal muscle following acute and chronic \hat{I}^22 -adrenergic stimulation: implications for hypertrophy, metabolism and circadian rhythm. BMC Genomics, 2009, 10, 448.	2.8	55
28	PPARÎ ³ agonists attenuate proliferation and modulate Wnt/Î ² -catenin signalling in melanoma cells. International Journal of Biochemistry and Cell Biology, 2009, 41, 844-852.	2.8	31
29	Rev-erb beta regulates the Srebp-1c promoter and mRNA expression in skeletal muscle cells. Biochemical and Biophysical Research Communications, 2009, 388, 654-659.	2.1	15
30	β-Adrenergic signaling regulates NR4A nuclear receptor and metabolic gene expression in multiple tissuesâ~†. Molecular and Cellular Endocrinology, 2009, 309, 101-108.	3.2	72
31	Sox18 induces development of the lymphatic vasculature in mice. Nature, 2008, 456, 643-647.	27.8	483
32	The Orphan Nuclear Receptor, RORα, Regulates Gene Expression That Controls Lipid Metabolism. Journal of Biological Chemistry, 2008, 283, 18411-18421.	3.4	167
33	Melanocortin-1 Receptor Signaling Markedly Induces the Expression of the NR4A Nuclear Receptor Subgroup in Melanocytic Cells. Journal of Biological Chemistry, 2008, 283, 12564-12570.	3.4	87
34	Retinoid-related orphan receptor regulates several genes that control metabolism in skeletal muscle cells: links to modulation of reactive oxygen species production. Journal of Molecular Endocrinology, 2007, 39, 29-44.	2.5	40
35	The NR4A Subgroup: Immediate Early Response Genes with Pleiotropic Physiological Roles. Nuclear Receptor Signaling, 2006, 4, nrs.04002.	1.0	363
36	The Orphan Rev-Erb Nuclear Receptors: A Link between Metabolism, Circadian Rhythm and Inflammation?. Nuclear Receptor Signaling, 2006, 4, nrs.04009.	1.0	68

GEORGE EO MUSCAT

#	Article	IF	CITATIONS
37	Chapter 3 PPARÎʿ: Emerging therapeutic potential of novel agonists in lipid and glucose homeostasis. Advances in Molecular and Cellular Endocrinology, 2006, 5, 43-62.	0.1	0
38	International Union of Pharmacology. LXVI. Orphan Nuclear Receptors. Pharmacological Reviews, 2006, 58, 798-836.	16.0	195
39	The Chicken Ovalbumin Upstream Promoter-Transcription Factors Modulate Genes and Pathways Involved in Skeletal Muscle Cell Metabolism. Journal of Biological Chemistry, 2006, 281, 24149-24160.	3.4	40
40	Halofenate Is a Selective Peroxisome Proliferator–Activated Receptor γ Modulator With Antidiabetic Activity. Diabetes, 2006, 55, 2523-2533.	0.6	90
41	Effect of Disrupted SOX18 Transcription Factor Function on Tumor Growth, Vascularization, and Endothelial Development. Journal of the National Cancer Institute, 2006, 98, 1060-1067.	6.3	78
42	Nur77 Regulates Lipolysis in Skeletal Muscle Cells. Journal of Biological Chemistry, 2005, 280, 12573-12584.	3.4	144
43	Rev-erbÎ ² Regulates the Expression of Genes Involved in Lipid Absorption in Skeletal Muscle Cells. Journal of Biological Chemistry, 2005, 280, 8651-8659.	3.4	83
44	TRAP220 is modulated by the antineoplastic agent 6-Mercaptopurine, and mediates the activation of the NR4A subgroup of nuclear receptors. Journal of Molecular Endocrinology, 2005, 34, 835-848.	2.5	49
45	Skeletal muscle and nuclear hormone receptors: Implications for cardiovascular and metabolic disease. International Journal of Biochemistry and Cell Biology, 2005, 37, 2047-2063.	2.8	145
46	RORα Regulates the Expression of Genes Involved in Lipid Homeostasis in Skeletal Muscle Cells. Journal of Biological Chemistry, 2004, 279, 36828-36840.	3.4	157
47	The VCAM-1 Gene That Encodes the Vascular Cell Adhesion Molecule Is a Target of the Sry-related High Mobility Group Box Gene, Sox18. Journal of Biological Chemistry, 2004, 279, 5314-5322.	3.4	49
48	Sox18 mutations in theragged mouse allelesragged-like andopossum. Genesis, 2003, 36, 1-6.	1.6	59
49	Role of HuR in Skeletal Myogenesis through Coordinate Regulation of Muscle Differentiation Genes. Molecular and Cellular Biology, 2003, 23, 4991-5004.	2.3	177
50	The AF-1 Domain of the Orphan Nuclear Receptor NOR-1 Mediates Trans-activation, Coactivator Recruitment, and Activation by the Purine Anti-metabolite 6-Mercaptopurine. Journal of Biological Chemistry, 2003, 278, 24776-24790.	3.4	134
51	The Peroxisome Proliferator-Activated Receptor β/δ Agonist, GW501516, Regulates the Expression of Genes Involved in Lipid Catabolism and Energy Uncoupling in Skeletal Muscle Cells. Molecular Endocrinology, 2003, 17, 2477-2493.	3.7	342
52	The Coactivator-associated Arginine Methyltransferase Is Necessary for Muscle Differentiation. Journal of Biological Chemistry, 2002, 277, 4324-4333.	3.4	142
53	Regulation of Cholesterol Homeostasis and Lipid Metabolism in Skeletal Muscle by Liver X Receptors. Journal of Biological Chemistry, 2002, 277, 40722-40728.	3.4	92
54	The Activation Function-1 Domain of Nur77/NR4A1 Mediates Trans-activation, Cell Specificity, and Coactivator Recruitment. Journal of Biological Chemistry, 2002, 277, 33001-33011.	3.4	132

GEORGE EO MUSCAT

#	Article	IF	CITATIONS
55	Characterization of the Retinoid Orphan-Related Receptor-Â Coactivator Binding Interface: A Structural Basis for Ligand-Independent Transcription. Molecular Endocrinology, 2002, 16, 998-1012.	3.7	18
56	SOX18 Directly Interacts with MEF2C in Endothelial Cells. Biochemical and Biophysical Research Communications, 2001, 287, 493-500.	2.1	56
5 7	Cloning and functional analysis of the Sry -related HMG box gene, Sox18. Gene, 2001, 262, 239-247.	2.2	37
58	Sox18 expression in blood vessels and feather buds during chicken embryogenesis. Gene, 2001, 271, 151-158.	2.2	14
59	Class I Histone Deacetylases Sequentially Interact with MyoD and pRb during Skeletal Myogenesis. Molecular Cell, 2001, 8, 885-897.	9.7	197
60	A Dynamic Role for HDAC7 in MEF2-mediated Muscle Differentiation. Journal of Biological Chemistry, 2001, 276, 17007-17013.	3.4	177
61	Domains of Brn-2 that mediate homodimerization and interaction with general and melanocytic transcription factors. FEBS Journal, 2000, 267, 6413-6422.	0.2	47
62	Mutations in Sox18 underlie cardiovascular and hair follicle defects in ragged mice. Nature Genetics, 2000, 24, 434-437.	21.4	201
63	Not a minute to waste. Nature Medicine, 2000, 6, 1216-1217.	30.7	13
64	Structure, mapping, and expression of human SOX18. Mammalian Genome, 2000, 11, 1147-1149.	2.2	13
65	Mice Null for <i>Sox18</i> Are Viable and Display a Mild Coat Defect. Molecular and Cellular Biology, 2000, 20, 9331-9336.	2.3	106
66	Exogenous expression of a dominant negative RORÂ1 vector in muscle cells impairs differentiation: RORÂ1 directly interacts with p300 and MyoD. Nucleic Acids Research, 1999, 27, 411-420.	14.5	89
67	Structure/function analysis of a dUTPase: catalytic mechanism of a potential chemotherapeutic target. Journal of Molecular Biology, 1999, 288, 275-287.	4.2	39
68	Repression of basal transcription by vitamin D receptor: evidence for interaction of unliganded vitamin D receptor with two receptor interaction domains in RIP13delta1. Journal of Molecular Endocrinology, 1998, 20, 327-335.	2.5	51
69	The corepressor N-CoR and its variants RIP13a and RIP13Â1 directly interact with the basal transcription factors TFIIB, TAFII32 and TAFII70. Nucleic Acids Research, 1998, 26, 2899-2907.	14.5	125
70	SOX9 Binds DNA, Activates Transcription, and Coexpresses with Type II Collagen during Chondrogenesis in the Mouse. Developmental Biology, 1997, 183, 108-121.	2.0	640
71	Transcriptional repression by COUP-TF II is dependent on the C-terminal domain and involves the N-CoR variant, RIP13δ1. Journal of Steroid Biochemistry and Molecular Biology, 1997, 63, 165-174.	2.5	40
72	TheSry-Related GeneSox18Maps to Distal Mouse Chromosome 2. Genomics, 1996, 36, 558-559.	2.9	15

#	Article	IF	CITATIONS
73	Two Receptor Interaction Domains in the Corepressor, N-CoR/RIP13, Are Required for an Efficient Interaction with Rev-erbAÂ and RVR: Physical Association is Dependent on the E Region of the Orphan Receptors. Nucleic Acids Research, 1996, 24, 4379-4386.	14.5	77
74	Characterization of the AB (AF-1) region in the muscle-specific retinoid X receptor-gamma: evidence that the AF-1 region functions in a cell-specific manner. Nucleic Acids Research, 1996, 24, 264-271.	14.5	23
75	Regulation of vertebrate muscle differentiation by thyroid hormone: The role of themyoD gene family. BioEssays, 1995, 17, 211-218.	2.5	83
76	Trans-activation and DNA-binding properties of the transcription factor, Sox-18. Nucleic Acids Research, 1995, 23, 2626-2628.	14.5	77
77	Identification of a regulatory function for an orphan receptor in muscle: COUP-TF II affects the expression of themyoDgene family during myogenesis. Nucleic Acids Research, 1995, 23, 1311-1318.	14.5	46
78	Sequence and expression of Sox-18 encoding a new HMG-box transcription factor. Gene, 1995, 161, 223-225.	2.2	54
79	Activation ofmyoDgene transcription by 3,5,3'-triiodo-L-thyronine: a direct role for the thyroid hormone and retinoid X receptors. Nucleic Acids Research, 1994, 22, 583-591.	14.5	93
80	Signal Transduction by the Growth Hormone Receptor. Experimental Biology and Medicine, 1994, 206, 216-220.	2.4	23
81	Expression vectors encoding human growth hormone (hGH) controlled by human muscle-specific promoters: prospects for regulated production of hGH delivered by myoblast transfer or intravenous injection. Gene, 1994, 145, 305-310.	2.2	19
82	Proliferin, a Prolactin/Growth Hormone-Like Peptide Represses Myogenic-Specific Transcription by the Suppression of an Essential Serum Response Factor-Like DNA-Binding Activity. Molecular Endocrinology, 1991, 5, 802-814.	3.7	29
83	Nucleotide sequence and expression of the human skeletal ?-actin gene: Evolution of functional regulatory domains*1. Genomics, 1988, 3, 323-336.	2.9	81
84	A human beta-actin expression vector system directs high-level accumulation of antisense transcripts Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 4831-4835.	7.1	720
85	Growth-related Changes in Specific mRNAs upon Lectin Activation of Human Lymphocytes. DNA and Cell Biology, 1985, 4, 377-384.	5.2	11