John C Roeske

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5186056/publications.pdf Version: 2024-02-01

		109321	58581
122	6,992	35	82
papers	citations	h-index	g-index
123	123	123	4262
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Association Between Bone Marrow Dosimetric Parameters and Acute Hematologic Toxicity in Anal Cancer Patients Treated With Concurrent Chemotherapy and Intensity-Modulated Radiotherapy. International Journal of Radiation Oncology Biology Physics, 2008, 70, 1431-1437.	0.8	787
2	Intensity-modulated whole pelvic radiotherapy in women with gynecologic malignancies. International Journal of Radiation Oncology Biology Physics, 2002, 52, 1330-1337.	0.8	431
3	Modeling of dose to tumor and normal tissue from intraperitoneal radioimmunotherapy with alpha and beta emitters. International Journal of Radiation Oncology Biology Physics, 1990, 19, 1539-1548.	0.8	424
4	Evaluation of changes in the size and location of the prostate, seminal vesicles, bladder, and rectum during a course of external beam radiation therapy. International Journal of Radiation Oncology Biology Physics, 1995, 33, 1321-1329.	0.8	387
5	MIRD Pamphlet No. 22 (Abridged): Radiobiology and Dosimetry of α-Particle Emitters for Targeted Radionuclide Therapy. Journal of Nuclear Medicine, 2010, 51, 311-328.	5.0	385
6	Intensity-modulated whole pelvic radiation therapy in patients with gynecologic malignancies. International Journal of Radiation Oncology Biology Physics, 2000, 48, 1613-1621.	0.8	338
7	Preliminary analysis of chronic gastrointestinal toxicity in gynecology patients treated with intensity-modulated whole pelvic radiation therapy. International Journal of Radiation Oncology Biology Physics, 2003, 56, 1354-1360.	0.8	314
8	Dosimetric predictors of acute hematologic toxicity in cervical cancer patients treated with concurrent cisplatin and intensity-modulated pelvic radiotherapy. International Journal of Radiation Oncology Biology Physics, 2006, 66, 1356-1365.	0.8	274
9	Concurrent Chemotherapy and Intensity-Modulated Radiation Therapy for Anal Canal Cancer Patients: A Multicenter Experience. Journal of Clinical Oncology, 2007, 25, 4581-4586.	1.6	252
10	Impact of intensity-modulated radiotherapy on acute hematologic toxicity in women with gynecologic malignancies. International Journal of Radiation Oncology Biology Physics, 2002, 54, 1388-1396.	0.8	216
11	A dosimetric analysis of acute gastrointestinal toxicity in women receiving intensity-modulated whole-pelvic radiation therapy. Radiotherapy and Oncology, 2003, 69, 201-207.	0.6	174
12	Dosimetric Comparison of Bone Marrow-Sparing Intensity-Modulated Radiotherapy Versus Conventional Techniques for Treatment of Cervical Cancer. International Journal of Radiation Oncology Biology Physics, 2008, 71, 1504-1510.	0.8	164
13	Intensity-modulated radiotherapy as a means of reducing dose to bone marrow in gynecologic patients receiving whole pelvic radiotherapy. International Journal of Radiation Oncology Biology Physics, 2003, 57, 516-521.	0.8	157
14	Intensity-modulated radiotherapy in treatment of pancreatic and bile duct malignancies: toxicity and clinical outcome. International Journal of Radiation Oncology Biology Physics, 2004, 59, 445-453.	0.8	151
15	Normal Tissue Complication Probability Modeling of Acute Hematologic Toxicity in Cervical Cancer Patients Treated With Chemoradiotherapy. International Journal of Radiation Oncology Biology Physics, 2011, 79, 800-807.	0.8	148
16	Characterization of the Theorectical Radiation Dose Enhancement from Nanoparticles. Technology in Cancer Research and Treatment, 2007, 6, 395-401.	1.9	143
17	Clinical Outcomes of Intensity-Modulated Pelvic Radiation Therapy for Carcinoma of the Cervix. International Journal of Radiation Oncology Biology Physics, 2011, 80, 1436-1445.	0.8	135
18	Initial Clinical Experience with Intensity-Modulated Whole-Pelvis Radiation Therapy in Women with Gynecologic Malignancies. Gynecologic Oncology, 2001, 82, 456-463.	1.4	124

#	Article	IF	CITATIONS
19	Radiation-Related Predictors of Hematologic Toxicity After Concurrent Chemoradiation for Cervical Cancer and Implications for Bone Marrowã€"Sparing Pelvic IMRT. International Journal of Radiation Oncology Biology Physics, 2011, 79, 1043-1047.	0.8	124
20	Preliminary outcome and toxicity report of extended-field, intensity-modulated radiation therapy for gynecologic malignancies. International Journal of Radiation Oncology Biology Physics, 2006, 65, 1170-1176.	0.8	98
21	Late rectal sequelae following definitive radiation therapy for carcinoma of the uterine cervix: A dosimetric analysis. International Journal of Radiation Oncology Biology Physics, 1997, 37, 351-358.	0.8	89
22	A survey of intensity-modulated radiation therapy use in the United States. Cancer, 2003, 98, 204-211.	4.1	89
23	Incorporation of SPECT bone marrow imaging into intensity modulated whole-pelvic radiation therapy treatment planning for gynecologic malignancies. Radiotherapy and Oncology, 2005, 77, 11-17.	0.6	80
24	Linac-Based Intensity Modulated Total Marrow Irradiation (IM-TMI). Technology in Cancer Research and Treatment, 2006, 5, 513-519.	1.9	66
25	A multi-institutional acute gastrointestinal toxicity analysis of anal cancer patients treated with concurrent intensity-modulated radiation therapy (IMRT) and chemotherapy. Radiotherapy and Oncology, 2009, 93, 298-301.	0.6	66
26	Feasibility study for linacâ€based intensity modulated total marrow irradiation. Medical Physics, 2008, 35, 5609-5618.	3.0	53
27	Adaptive Radiotherapy for Head and Neck Cancer. Technology in Cancer Research and Treatment, 2017, 16, 218-223.	1.9	53
28	Reduction of computed tomography metal artifacts due to the Fletcher-Suit applicator in gynecology patients receiving intracavitary brachytherapy. Brachytherapy, 2003, 2, 207-214.	0.5	48
29	Markerless motion tracking of lung tumors using dualâ€energy fluoroscopy. Medical Physics, 2015, 42, 254-262.	3.0	47
30	Intensity-modulated radiation therapy in gynecologic malignancies. Medical Dosimetry, 2002, 27, 131-136.	0.9	46
31	A hybrid approach to reducing computed tomography metal artifacts in intracavitary brachytherapy. Brachytherapy, 2005, 4, 18-23.	0.5	46
32	A dosimetric analysis of intensity-modulated radiation therapy (IMRT) as an alternative to adjuvant high-dose-rate (HDR) brachytherapy in early endometrial cancer patients. International Journal of Radiation Oncology Biology Physics, 2006, 65, 266-273.	0.8	46
33	Predictors of Tumor Control in Patients Treated With Linac-Based Stereotactic Radiosurgery for Metastatic Disease to the Brain. American Journal of Clinical Oncology: Cancer Clinical Trials, 2005, 28, 180-187.	1.3	42
34	A System for Continual Quality Improvement of Normal Tissue Delineation for Radiation Therapy Treatment Planning. International Journal of Radiation Oncology Biology Physics, 2012, 83, e703-e708.	0.8	37
35	An overview of imaging techniques and physical aspects of treatment planning in radioimmunotherapy. Medical Physics, 1993, 20, 569-577.	3.0	36
36	Intensity-Modulated Radiation Therapy for Prostate Cancer. Clinical Prostate Cancer, 2003, 2, 98-105.	2.1	35

#	Article	IF	CITATIONS
37	Decision Trees Predicting Tumor Shrinkage for Head and Neck Cancer. Technology in Cancer Research and Treatment, 2016, 15, 139-145.	1.9	34
38	Linear Accelerator-Based Intensity-Modulated Total Marrow Irradiation Technique for Treatment of Hematologic Malignancies: A Dosimetric Feasibility Study. International Journal of Radiation Oncology Biology Physics, 2011, 79, 1256-1265.	0.8	33
39	Improving the Accessibility of Patient Care Through Integration of the Hospital and Radiation Oncology Electronic Health Records. JCO Clinical Cancer Informatics, 2017, 1, 1-8.	2.1	33
40	Small-Scale Dosimetry: Challenges and Future Directions. Seminars in Nuclear Medicine, 2008, 38, 367-383.	4.6	31
41	Dual energy imaging using a clinical on-board imaging system. Physics in Medicine and Biology, 2013, 58, 4331-4340.	3.0	31
42	Evaluation of Deformable Image Registration-Based Contour Propagation From Planning CT to Cone-Beam CT. Technology in Cancer Research and Treatment, 2017, 16, 801-810.	1.9	28
43	Biological effective dose for comparison and combination of external beam and low-dose rate interstitial brachytherapy prostate cancer treatment plans. Medical Dosimetry, 2004, 29, 42-48.	0.9	27
44	Setup errors in patients treated with intensity-modulated whole pelvic radiation therapy for gynecological malignancies. Medical Dosimetry, 2005, 30, 36-42.	0.9	24
45	Optimization of the temporal pattern of radiation: An IMRT based study. International Journal of Radiation Oncology Biology Physics, 2006, 66, 898-905.	0.8	24
46	Prospective Evaluation of Dual-Energy Imaging in Patients Undergoing Image Guided Radiation Therapy for Lung Cancer: Initial Clinical Results. International Journal of Radiation Oncology Biology Physics, 2014, 89, 525-531.	0.8	24
47	Markerless tumor tracking using fastâ€kV switching dualâ€energy fluoroscopy on a benchtop system. Medical Physics, 2019, 46, 3235-3244.	3.0	23
48	Biological-effective versus conventional dose volume histograms correlated with late genitourinary and gastrointestinal toxicity after external beam radiotherapy for prostate cancer: a matched pair analysis. BMC Cancer, 2003, 3, 16.	2.6	22
49	The average number of alpha-particle hits to the cell nucleus required to eradicate a tumour cell population. Physics in Medicine and Biology, 2006, 51, N179-N186.	3.0	20
50	Calculation and Prediction of the Effect of Respiratory Motion on Whole Breast Radiation Therapy Dose Distributions. Medical Dosimetry, 2009, 34, 126-132.	0.9	20
51	Implementation of Electronic Checklists in an Oncology Medical Record: Initial Clinical Experience. Journal of Oncology Practice, 2011, 7, 222-226.	2.5	20
52	The Use of Microdosimetric Moments in Evaluating Cell Survival for Therapeutic Alpha-Particle Emitters. Radiation Research, 1999, 151, 31.	1.5	19
53	Tumor Control Probability Model for Alpha-Particle-Emitting Radionuclides. Radiation Research, 2000, 153, 16-22.	1.5	19
54	Analysis of Survival of C-18 Cells after Irradiation in Suspension with Chelated and Ionic Bismuth-212 Using Microdosimetry. Radiation Research, 1994, 140, 48.	1.5	17

#	Article	IF	CITATIONS
55	How one institution overcame the challenges to start an MRI-based brachytherapy program for cervical cancer. Journal of Contemporary Brachytherapy, 2017, 2, 177-186.	0.9	17
56	Failure mode and effects analysis of linacâ€based liver stereotactic body radiotherapy. Medical Physics, 2020, 47, 937-947.	3.0	17
57	Observer Evaluation of a Metal Artifact Reduction Algorithm Applied to Head and Neck Cone Beam Computed Tomographic Images. International Journal of Radiation Oncology Biology Physics, 2016, 96, 897-904.	0.8	16
58	Early outcomes and impact of a hybrid IC/IS applicator for a new MRI-based cervical brachytherapy program. Brachytherapy, 2018, 17, 187-193.	0.5	16
59	Values of "S,―ã€^z1〉, and ã€^z 12〉 for dosimetry using alpha-particle emitters. Medical Physics, 2 1960-1971.	1999, 26, 3.0	15
60	Alpha-particle Monte Carlo simulation for microdosimetric calculations using a commercial spreadsheet. Physics in Medicine and Biology, 2007, 52, 1909-1922.	3.0	15
61	ACR–ASTRO Practice Parameter for Image-guided Radiation Therapy (IGRT). American Journal of Clinical Oncology: Cancer Clinical Trials, 2020, 43, 459-468.	1.3	15
62	The markerless lung target tracking AAPM Grand Challenge (MATCH) results. Medical Physics, 2022, 49, 1161-1180.	3.0	15
63	Fast-switching dual energy cone beam computed tomography using the on-board imager of a commercial linear accelerator. Physics in Medicine and Biology, 2020, 65, 015013.	3.0	14
64	Can intensity-modulated radiation therapy replace brachytherapy in the management of cervical cancer?. Brachytherapy, 2002, 1, 192-194.	0.5	13
65	Intensity-modulated radiation therapy in gynecologic malignancies. Current Treatment Options in Oncology, 2004, 5, 97-108.	3.0	13
66	Incorporation of magnetic resonance imaging into intensity modulated whole-pelvic radiation therapy treatment planning to reduce the volume of pelvic bone marrow irradiated. International Congress Series, 2004, 1268, 307-312.	0.2	13
67	Validation of Temporal Optimization Effects for a Single Fraction of Radiation In Vitro. International Journal of Radiation Oncology Biology Physics, 2009, 75, 1240-1246.	0.8	12
68	Role of image guided radiation therapy in obese patients with gynecologic malignancies. Practical Radiation Oncology, 2013, 3, 249-255.	2.1	12
69	A novel surrogate to identify anatomical changes during radiotherapy of head and neck cancer patients. Medical Physics, 2017, 44, 924-934.	3.0	12
70	Part I. Molecular and cellular characterization of high nitric oxide-adapted human breast adenocarcinoma cell lines. Tumor Biology, 2013, 34, 203-214.	1.8	11
71	Dosimetric feasibility of brain stereotactic radiosurgery with a 0.35 T MRIâ€guided linac and comparison vs a Câ€armâ€mounted linac. Medical Physics, 2020, 47, 5455-5466.	3.0	11
72	Relationships between Cell Survival and Specific Energy Spectra for Therapeutic Alpha-Particle Emitters. Radiation Research, 1996, 145, 268.	1.5	10

#	Article	IF	CITATIONS
73	Evaluation of a template-based algorithm for markerless lung tumour localization on single- and dual-energy kilovoltage images. British Journal of Radiology, 2016, 89, 20160648.	2.2	10
74	Part II. Initial molecular and cellular characterization of high nitric oxide-adapted human tongue squamous cell carcinoma cell lines. Tumor Biology, 2011, 32, 87-98.	1.8	9
75	The Impact of Transitioning to Prospective Contouring and Planning Rounds as Peer Review. Advances in Radiation Oncology, 2019, 4, 532-540.	1.2	9
76	Characterization of Markerless Tumor Tracking Using the On-Board Imager of a Commercial Linear Accelerator Equipped With Fast-kV Switching Dual-Energy Imaging. Advances in Radiation Oncology, 2020, 5, 1006-1013.	1.2	9
77	Dosimetry of intraperitoneally administered radiolabeled antibodies. Medical Physics, 1993, 20, 593-600.	3.0	8
78	Image Processing Tools for Alpha-Particle Track-Etch Dosimetry. Cancer Biotherapy and Radiopharmaceuticals, 2003, 18, 425-430.	1.0	7
79	Survey of Resident Education in Intensity-Modulated Radiation Therapy. Technology in Cancer Research and Treatment, 2005, 4, 303-309.	1.9	7
80	A survey on table tolerances and couch overrides in radiotherapy. Journal of Applied Clinical Medical Physics, 2016, 17, 405-420.	1.9	7
81	Microdosimetry-based determination of tumour control probability curves for treatments with ²²⁵ Ac-PSMA of metastatic castration resistant prostate cancer. Physics in Medicine and Biology, 2020, 65, 235012.	3.0	7
82	Binary Methods for the Microdosimetric Analysis of Cell Survival Data from Alpha-Particle Irradiation. Cancer Biotherapy and Radiopharmaceuticals, 2003, 18, 481-487.	1.0	6
83	Characterization of an Alpha-Particle Irradiator for Individual Cell Dosimetry Measurements. Cancer Biotherapy and Radiopharmaceuticals, 2003, 18, 437-444.	1.0	6
84	Cell detection in phase-contrast images used for alpha-particle track-etch dosimetry: a semi-automated approach. Physics in Medicine and Biology, 2005, 50, 305-318.	3.0	6
85	A multiâ€institutional study to assess adherence to lung stereotactic body radiotherapy planning goals. Medical Physics, 2015, 42, 4629-4635.	3.0	6
86	A Medicare cost analysis of MRI- versus CT-based high-dose-rate brachytherapy of the cervix: Can MRI-based planning be less costly?. Brachytherapy, 2018, 17, 326-333.	0.5	6
87	Transitioning From a Low-Dose-Rate to a High-Dose-Rate Prostate Brachytherapy Program: Comparing Initial Dosimetry and Improving Workflow Efficiency Through Targeted Interventions. Advances in Radiation Oncology, 2019, 4, 103-111.	1.2	6
88	Fully automated planning and delivery of hippocampal-sparing whole brain irradiation. Medical Dosimetry, 2022, 47, 8-13.	0.9	6
89	Intensity-modulated radiotherapy and the Internet. Cancer, 2004, 101, 412-420.	4.1	5
90	Characterization of a novel phantom for three-dimensional <i>in vitro</i> cell experiments. Physics in Medicine and Biology, 2009, 54, N75-N82.	3.0	5

John C Roeske

#	Article	IF	CITATIONS
91	Metal Artifact Reduction in Cone-Beam Computed Tomography for Head and Neck Radiotherapy. Technology in Cancer Research and Treatment, 2016, 15, NP88-NP94.	1.9	5
92	Efficient quality assurance method with automated data acquisition of a single phantom setup to determine radiation and imaging isocenter congruence. Journal of Applied Clinical Medical Physics, 2019, 20, 127-133.	1.9	5
93	A novel phantom for characterization of dual energy imaging using an on-board imaging system. Physics in Medicine and Biology, 2019, 64, 03NT01.	3.0	5
94	Dosimetric assessment of brass mesh bolus and transparent polymer-gel type bolus for commonly used breast treatment delivery techniques. Medical Dosimetry, 2021, 46, e10-e14.	0.9	5
95	Intensity-modulated radiation therapy in gynecologic malignancies: current status and future directions. Clinical Advances in Hematology and Oncology, 2006, 4, 379-86.	0.3	5
96	Eye shielding for patients treated with total body irradiation. Medical Dosimetry, 1996, 21, 73-78.	0.9	4
97	Evaluation of Internal Alpha-Particle Radiation Exposure and Subsequent Fertility among a Cohort of Women Formerly Employed in the Radium Dial Industry. Radiation Research, 1997, 147, 236.	1.5	4
98	Comparison of microdosimetry-based absorbed doses to control tumours and clinically obtained tumour absorbed doses in treatments with 223Ra. Physics in Medicine and Biology, 2018, 63, 145005.	3.0	4
99	Adaptive weighted log subtraction based on neural networks for markerless tumor tracking using dualâ€energy fluoroscopy. Medical Physics, 2020, 47, 672-680.	3.0	4
100	Radionuclide Therapy for the Treatment of Microscopic Ovarian Carcinoma:Â An Overview. Industrial & Engineering Chemistry Research, 2000, 39, 3135-3139.	3.7	3
101	Evaluation of Radiomics to Predict the Accuracy of Markerless Motion Tracking of Lung Tumors: A Preliminary Study. Frontiers in Oncology, 2018, 8, 292.	2.8	3
102	Medical Image Registration Using the Fourier Transform. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 2014, 03, 49-55.	0.1	3
103	Electron-photon field matching in the treatment of paranasal sinus tumors: A case report. Medical Dosimetry, 1996, 21, 31-36.	0.9	2
104	Simulation of Binary Methods for the Microdosimetric Analysis of Cell Survival after Alpha-Particle Irradiation: Ability to Distinguish between Different Models. Radiation Research, 2004, 162, 585-591.	1.5	2
105	Planar ICRT dose reduction: A practical approach. Practical Radiation Oncology, 2015, 5, e239-e244.	2.1	2
106	Spectral characterization of tissues in high spectral and spatial resolution MR images: Implications for a classificationâ€based synthetic CT algorithm. Medical Physics, 2017, 44, 1865-1875.	3.0	2
107	Evaluating Clinical Stopping Power Estimation from a Radiotherapy Dual Energy CT Scanner. Acta Physica Polonica B, 2017, 48, 1619.	0.8	2
108	Early Outcomes and Impact of a Hybrid IC/IS Applicator for a New MRI-Based Cervical Brachytherapy Program. Brachytherapy, 2017, 16, S61.	0.5	1

#	Article	IF	CITATIONS
109	Comparing Low Dose Rate and High Dose Rate Prostate Brachytherapy Implant Dosimetry. Brachytherapy, 2017, 16, S113-S114.	0.5	1
110	Can MRI-only replace MRI-CT planning with a titanium tandem andÂovoid applicator?. Brachytherapy, 2018, 17, 747-752.	0.5	1
111	SU-E-J-110: A Novel Metric to Evaluate Dose Deformation Error for Deformable Image Registration Algorithms. Medical Physics, 2013, 40, 176-176.	3.0	1
112	Alpha particle microdosimetry calculations using a shallow neural network. Physics in Medicine and Biology, 2022, 67, 025008.	3.0	1
113	Updates in Adjuvant Therapy for High-Risk and Locally Advanced Endometrial Cancer. Advances in Oncology, 2022, 2, 25-33.	0.2	1
114	In response to Drs. Cameron and Cornes. International Journal of Radiation Oncology Biology Physics, 2006, 66, 956-957.	0.8	0
115	Technical Note: Estimation of lung tumor thickness from planar dualâ€energy kV images. Medical Physics, 2015, 42, 5055-5059.	3.0	0
116	Reducing Prostate High Dose Rate Brachytherapy Treatment Planning Duration Through Targeted Interventions. Brachytherapy, 2017, 16, S40.	0.5	0
117	SU-E-J-196: Evaluation of the Relationship Between Tumor Thickness and Relative Pixel Value in Dual Energy (DE) Imaging. Medical Physics, 2013, 40, 196-196.	3.0	Ο
118	SU-E-J-25: A Quantitative Comparison of Contrast-To-Noise in Rib Suppressed Images. Medical Physics, 2013, 40, 155-155.	3.0	0
119	MO-A-137-11: How Successful Are We in Meeting SBRT Planning Goals? A Multi-Institutional Study. Medical Physics, 2013, 40, 389-389.	3.0	0
120	SU-E-T-316: Dosimetry of Electron Beams at Extremely Extended SSD: Monte Carlo Calculations and Measurements. Medical Physics, 2013, 40, 277-277.	3.0	0
121	Moving towards hospital and radiation oncology EMR integration: Results of an institutional survey Journal of Clinical Oncology, 2016, 34, 152-152.	1.6	0
122	Phantom Tumor Tracking in Dual-Energy Fluoroscopy using a Kalman Filter. , 2020, , .		0