Katherine M Aird

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5185507/publications.pdf

Version: 2024-02-01

37 papers

2,516 citations

279798 23 h-index 345221 36 g-index

45 all docs 45 docs citations

45 times ranked

4965 citing authors

#	Article	IF	CITATIONS
1	Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nature Medicine, 2015, 21, 231-238.	30.7	530
2	NAD+ metabolism governs the proinflammatory senescence-associated secretome. Nature Cell Biology, 2019, 21, 397-407.	10.3	232
3	Suppression of Nucleotide Metabolism Underlies the Establishment and Maintenance of Oncogene-Induced Senescence. Cell Reports, 2013, 3, 1252-1265.	6.4	228
4	PI3K therapy reprograms mitochondrial trafficking to fuel tumor cell invasion. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8638-8643.	7.1	174
5	ARID1A-mutated ovarian cancers depend on HDAC6Âactivity. Nature Cell Biology, 2017, 19, 962-973.	10.3	173
6	HMGB2 orchestrates the chromatin landscape of senescence-associated secretory phenotype gene loci. Journal of Cell Biology, 2016, 215, 325-334.	5.2	132
7	Nucleotide metabolism, oncogene-induced senescence and cancer. Cancer Letters, 2015, 356, 204-210.	7.2	109
8	ATM Couples Replication Stress and Metabolic Reprogramming during Cellular Senescence. Cell Reports, 2015, 11, 893-901.	6.4	94
9	Oncogenic Ras Regulates BRIP1 Expression to Induce Dissociation of BRCA1 from Chromatin, Inhibit DNA Repair, and Promote Senescence. Developmental Cell, 2011, 21, 1077-1091.	7.0	82
10	EglN2 associates with the <scp>NRF</scp> 1â€ <scp>PGC</scp> 1α complex and controls mitochondrial function in breastÂcancer. EMBO Journal, 2015, 34, 2953-2970.	7.8	58
11	Deoxyribonucleotide Triphosphate Metabolism in Cancer and Metabolic Disease. Frontiers in Endocrinology, 2018, 9, 177.	3.5	58
12	SPOP E3ÂUbiquitin Ligase Adaptor Promotes Cellular Senescence by Degrading the SENP7 deSUMOylase. Cell Reports, 2015, 13, 1183-1193.	6.4	55
13	NFATC4 promotes quiescence and chemotherapy resistance in ovarian cancer. JCI Insight, 2020, 5, .	5.0	43
14	Suppression of p16 Induces mTORC1-Mediated Nucleotide Metabolic Reprogramming. Cell Reports, 2019, 28, 1971-1980.e8.	6.4	42
15	GPx3 supports ovarian cancer progression by manipulating the extracellular redox environment. Redox Biology, 2019, 25, 101051.	9.0	41
16	Context-dependent activation of SIRT3 is necessary for anchorage-independent survival and metastasis of ovarian cancer cells. Oncogene, 2020, 39, 1619-1633.	5.9	37
17	Identification of ribonucleotide reductase M2 as a potential target for pro-senescence therapy in epithelial ovarian cancer. Cell Cycle, 2014, 13, 199-207.	2.6	36
18	Ataxia-Telangiectasia Mutated Modulation of Carbon Metabolism in Cancer. Frontiers in Oncology, 2017, 7, 291.	2.8	36

#	Article	IF	CITATIONS
19	Targeting IDH1 as a Prosenescent Therapy in High-grade Serous Ovarian Cancer. Molecular Cancer Research, 2019, 17, 1710-1720.	3.4	36
20	Topoisomerase 1 cleavage complex enables pattern recognition and inflammation during senescence. Nature Communications, 2020, 11, 908.	12.8	36
21	CLIC1 and CLIC4 complement CA125 as a diagnostic biomarker panel for all subtypes of epithelial ovarian cancer. Scientific Reports, 2018, 8, 14725.	3.3	35
22	DOT1L modulates the senescence-associated secretory phenotype through epigenetic regulation of IL1A. Journal of Cell Biology, 2021, 220, .	5.2	35
23	Suppression of p16 alleviates the senescence-associated secretory phenotype. Aging, 2021, 13, 3290-3312.	3.1	34
24	Targeting RRM2 and Mutant BRAF Is a Novel Combinatorial Strategy for Melanoma. Molecular Cancer Research, 2016, 14, 767-775.	3.4	27
25	Metabolic alterations accompanying oncogene-induced senescence. Molecular and Cellular Oncology, 2014, 1, e963481.	0.7	26
26	Epigenetic synthetic lethality in ovarian clear cell carcinoma: EZH2 and <i>ARID1A</i> mutations. Molecular and Cellular Oncology, 2016, 3, e1032476.	0.7	21
27	p16: cycling off the beaten path. Molecular and Cellular Oncology, 2019, 6, e1677140.	0.7	17
28	Jumonji C Demethylases in Cellular Senescence. Genes, 2019, 10, 33.	2.4	16
29	Simultaneous isotope dilution quantification and metabolic tracing of deoxyribonucleotides by liquid chromatography high resolution mass spectrometry. Analytical Biochemistry, 2019, 568, 65-72.	2.4	14
30	ATM in senescence. Oncotarget, 2015, 6, 14729-14730.	1.8	13
31	Re-engineering Antimicrobial Peptides into Oncolytics Targeting Drug-Resistant Ovarian Cancers. Cellular and Molecular Bioengineering, 2020, 13, 447-461.	2.1	11
32	Loss of p16: A Bouncer of the Immunological Surveillance?. Life, 2021, 11, 309.	2.4	10
33	Ovarian cancer: how can resistance to chemotherapy be tackled?. Future Oncology, 2017, 13, 2737-2739.	2.4	9
34	ATM inhibition synergizes with fenofibrate in high grade serous ovarian cancer cells. Heliyon, 2020, 6, e05097.	3.2	4
35	Overexpression of oncogenic H-Ras in hTERT-immortalized and SV40-transformed human cells targets replicative and specialized DNA polymerases for depletion. PLoS ONE, 2021, 16, e0251188.	2.5	2
36	The senescence-associated secretory phenotype in ovarian cancer dissemination. American Journal of Physiology - Cell Physiology, 2022, 323, C125-C132.	4.6	2

#	Article	IF	CITATIONS
37	53BP1: guarding the genome with a novel liquid weapon. Communications Biology, 2022, 5, 435.	4.4	0