## **Chalermpon Mutuwong**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5184964/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Synthesis of Pb3O4-SiO2-ZnO-WO3 Glasses and their Fundamental Properties for Gamma Shielding<br>Applications. Silicon, 2022, 14, 5661-5671.                                                                                                           | 3.3 | 38        |
| 2  | Determining the optical properties and simulating the radiation shielding parameters of Dy3+ doped lithium yttrium borate glasses. Optik, 2022, 250, 168318.                                                                                          | 2.9 | 31        |
| 3  | Estimation of radiation protection ability of borate glass system doped with CdO, PbO, and TeO2.<br>Radiation Physics and Chemistry, 2022, 193, 109996.                                                                                               | 2.8 | 21        |
| 4  | Comparison of radiation shielding and elastic properties of germinate tellurite glasses with the addition of Ga <sub>2</sub> O <sub>3</sub> . Journal of Taibah University for Science, 2022, 16, 183-192.                                            | 2.5 | 25        |
| 5  | Optical properties and radiation shielding competence of Bi/Te-BGe glass system containing B2O3 and<br>GeO2. Optik, 2022, 257, 168883.                                                                                                                | 2.9 | 12        |
| 6  | Nuclear shielding properties of Ni-, Fe-, Pb-, and W-based alloys. Radiation Physics and Chemistry, 2022, 195, 110090.                                                                                                                                | 2.8 | 60        |
| 7  | A theoretical study on the radiation shielding performance of borate and tellurite glasses. Solid<br>State Sciences, 2022, 129, 106902.                                                                                                               | 3.2 | 12        |
| 8  | Optical transmission quality and radiation shielding performance of TeO2+ZnO+La2O3 ternary glass system. Optik, 2022, 266, 169625.                                                                                                                    | 2.9 | 10        |
| 9  | The effects of V2O5/K2O substitution on linear and nonlinear optical properties and the gamma ray shielding performance of TVK glasses. Ceramics International, 2021, 47, 1012-1020.                                                                  | 4.8 | 24        |
| 10 | Effects of AgO addition on the mechanical, optical, and radiation attenuation properties of<br>V2O5/P2O5/B2O3 glass system. Applied Physics A: Materials Science and Processing, 2021, 127, 1.                                                        | 2.3 | 11        |
| 11 | Microâ€hardness and gammaâ€ray attenuation properties of lead iron phosphate glasses. Journal of<br>Materials Science: Materials in Electronics, 2021, 32, 13906-13916.                                                                               | 2.2 | 51        |
| 12 | Role of heavy metal oxides on the radiation attenuation properties of newly developed TBBE-X glasses by computational methods. Physica Scripta, 2021, 96, 075302.                                                                                     | 2.5 | 55        |
| 13 | Ge20Se80-xBix (x â‰≇€‰12) chalcogenide glasses for infrared and gamma sensing applications: structural, optical and gamma attenuation aspects. Journal of Materials Science: Materials in Electronics, 2021, 32, 15509-15522.                         | 2.2 | 28        |
| 14 | Effects of MgO addition on the radiation attenuation properties of 45S5 bioglass system at the energies of medical interest: an in silico study. Journal of the Australian Ceramic Society, 2021, 57, 1107-1115.                                      | 1.9 | 31        |
| 15 | Effects of reducing PbO content on the elastic and radiation attenuation properties of germanate<br>glasses: a new nonâ€toxic candidate for shielding applications. Journal of Materials Science: Materials<br>in Electronics, 2021, 32, 15080-15094. | 2.2 | 11        |
| 16 | Amorphous alloys with high Fe content for radiation shielding applications. Radiation Physics and Chemistry, 2021, 183, 109386.                                                                                                                       | 2.8 | 123       |
| 17 | Elastic properties and radiation shielding ability of ZnO–P2O5/B2O3 glass system. Journal of Materials Science: Materials in Electronics, 2021, 32, 19203-19217.                                                                                      | 2.2 | 23        |
| 18 | The significant role of CeO <sub>2</sub> content on the radiation shielding performance of Fe <sub>2</sub> O <sub>3</sub> -P <sub>2</sub> O <sub>5</sub> glass-ceramics: Geant4 simulations study. Physica Scripta, 2021, 96, 115305.                 | 2.5 | 11        |

| #  | Article                                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Optical, elastic, and radiation shielding properties of Bi2O3-PbO-B2O3 glass system: A role of SnO2 addition. Optik, 2021, 248, 168047.                                                                                                                                                 | 2.9 | 35        |
| 20 | Gamma, neutron, and charged-particles shielding properties of tellurite glass system containing Sb2O3 and V2O5. Journal of Materials Science: Materials in Electronics, 2021, 32, 28275-28286.                                                                                          | 2.2 | 14        |
| 21 | Klein–Nishina formula and Monte Carlo method for evaluating the gamma attenuation properties of<br>Zn, Ba, Te and Bi elements. Materials Science-Poland, 2021, .                                                                                                                        | 1.0 | 4         |
| 22 | Optical and gamma-ray absorption features of newly developed P2O5â^'Ce2O3â^'La2O3 glass system.<br>Applied Physics A: Materials Science and Processing, 2021, 127, 1.                                                                                                                   | 2.3 | 17        |
| 23 | Investigation of the radiation shielding capability of \$\${x}hbox {PbO}\$\$–\$\$(50-x)hbox<br>{BaO}\$\$–\$\$50{hbox {B}}_2 {hbox {O}}_3\$\$ glass system using Geant4, Fluka, WinXCOM and<br>comparison of data with the experimental data. Pramana - Journal of Physics, 2020, 94, 1. | 1.8 | 10        |
| 24 | Evaluation of optical features and ionizing radiation shielding competences of TeO2–Li2O (TL) glasses via Geant4 simulation code and Phy-X/PSD program. Optical Materials, 2020, 108, 110394.                                                                                           | 3.6 | 25        |
| 25 | Gamma-ray/neutron shielding capacity and elastic moduli of MnO–K2O–B2O3 glasses co-doped with<br>Er3+ ions. Applied Physics A: Materials Science and Processing, 2020, 126, 1.                                                                                                          | 2.3 | 3         |
| 26 | The comparative studies of gamma-ray shielding properties of the PbO–BaO–B2O3 glass system by using FLUKA code to XCOM program and accessible experimental data. Journal of Physics: Conference Series, 2018, 1144, 012130.                                                             | 0.4 | 0         |