Lucio Barile

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5184945/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Methods for the identification and characterization of extracellular vesicles in cardiovascular studies: from exosomes to microvesicles. Cardiovascular Research, 2023, 119, 45-63.	3.8	44
2	Supervised and unsupervised learning to define the cardiovascular risk of patients according to an extracellular vesicle molecular signature. Translational Research, 2022, , .	5.0	8
3	Good reasons for targeting SARS-CoV-2 by engineered extracellular vesicles. Molecular Therapy - Methods and Clinical Development, 2022, 25, 41-42.	4.1	0
4	Risk stratification of patients with SARS-CoV-2 by tissue factor expression in circulating extracellular vesicles. Vascular Pharmacology, 2022, 145, 106999.	2.1	11
5	De novo DNA methylation induced by circulating extracellular vesicles from acute coronary syndrome patients. Atherosclerosis, 2022, 354, 41-52.	0.8	10
6	Insights into therapeutic products, preclinical research models, and clinical trials in cardiac regenerative and reparative medicine: where are we now and the way ahead. Current opinion paper of the ESC Working Group on Cardiovascular Regenerative and Reparative Medicine. Cardiovascular Research, 2021, 117, 1428-1433.	3.8	20
7	An exosomal-carried short periostin isoform induces cardiomyocyte proliferation. Theranostics, 2021, 11, 5634-5649.	10.0	19
8	Circulating extracellular vesicles release oncogenic miR-424 in experimental models and patients with aggressive prostate cancer. Communications Biology, 2021, 4, 119.	4.4	18
9	A Changing Paradigm in Heart Transplantation: An Integrative Approach for Invasive and Non-Invasive Allograft Rejection Monitoring. Biomolecules, 2021, 11, 201.	4.0	11
10	Cardiac Graft Assessment in the Era of Machine Perfusion: Current and Future Biomarkers. Journal of the American Heart Association, 2021, 10, e018966.	3.7	13
11	Profiling Inflammatory Extracellular Vesicles in Plasma and Cerebrospinal Fluid: An Optimized Diagnostic Model for Parkinson's Disease. Biomedicines, 2021, 9, 230.	3.2	12
12	Structural and Electrophysiological Changes in a Model of Cardiotoxicity Induced by Anthracycline Combined With Trastuzumab. Frontiers in Physiology, 2021, 12, 658790.	2.8	10
13	Circulating extracellular vesicles are endowed with enhanced procoagulant activity in SARS-CoV-2 infection. EBioMedicine, 2021, 67, 103369.	6.1	61
14	Characterization of Circulating Extracellular Vesicle Surface Antigens in Patients With Primary Aldosteronism. Hypertension, 2021, 78, 726-737.	2.7	14
15	Extracellular Vesicle Surface Markers as a Diagnostic Tool in Transient Ischemic Attacks. Stroke, 2021, 52, 3335-3347.	2.0	12
16	Intravenous administration of cardiac progenitor cell-derived exosomes protects against doxorubicin/trastuzumab-induced cardiac toxicity. Cardiovascular Research, 2020, 116, 383-392.	3.8	91
17	Role of somatic cell sources in the maturation degree of human induced pluripotent stem cell-derived cardiomyocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118538.	4.1	29
18	An extracellular vesicle epitope profile is associated with acute myocardial infarction. Journal of Cellular and Molecular Medicine, 2020, 24, 9945-9957.	3.6	27

#	Article	IF	CITATIONS
19	Circulating extracellular vesicles as non-invasive biomarker of rejection in heart transplant. Journal of Heart and Lung Transplantation, 2020, 39, 1136-1148.	0.6	54
20	The swan song of dying cells. Cardiovascular Research, 2020, 116, e90-e92.	3.8	2
21	Immune profiling of plasma-derived extracellular vesicles identifies Parkinson disease. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	6.0	45
22	Mitochondrial and mitochondrialâ€independent pathways of myocardial cell death during ischaemia and reperfusion injury. Journal of Cellular and Molecular Medicine, 2020, 24, 3795-3806.	3.6	118
23	Message in a Bottle: Upgrading Cardiac Repair into Rejuvenation. Cells, 2020, 9, 724.	4.1	18
24	Inflammatory extracellular vesicles prompt heart dysfunction via TRL4-dependent NF-κB activation. Theranostics, 2020, 10, 2773-2790.	10.0	39
25	Ticagrelor Enhances Release of Anti-Hypoxic Cardiac Progenitor Cell-Derived Exosomes Through Increasing Cell Proliferation In Vitro. Scientific Reports, 2020, 10, 2494.	3.3	37
26	Human Induced Pluripotent Stem Cells Derived from a Cardiac Somatic Source: Insights for an In-Vitro Cardiomyocyte Platform. International Journal of Molecular Sciences, 2020, 21, 507.	4.1	12
27	Sphingolipid composition of circulating extracellular vesicles after myocardial ischemia. Scientific Reports, 2020, 10, 16182.	3.3	40
28	Perioperative cardioprotection: back to bedside. Minerva Anestesiologica, 2020, 86, 445-454.	1.0	15
29	GMP-Grade Methods for Cardiac Progenitor Cells: Cell Bank Production and Quality Control. Methods in Molecular Biology, 2020, 2286, 131-166.	0.9	11
30	Supporting data on inÂvitro cardioprotective and proliferative paracrine effects by the human amniotic fluid stem cell secretome. Data in Brief, 2019, 25, 104324.	1.0	14
31	Exosomal Expression of CXCR4 Targets Cardioprotective Vesicles to Myocardial Infarction and Improves Outcome after Systemic Administration. International Journal of Molecular Sciences, 2019, 20, 468.	4.1	68
32	Flow Cytometric Analysis of Extracellular Vesicles from Cell-conditioned Media. Journal of Visualized Experiments, 2019, , .	0.3	10
33	Reactivating endogenous mechanisms of cardiac regeneration via paracrine boosting using the human amniotic fluid stem cell secretome. International Journal of Cardiology, 2019, 287, 87-95.	1.7	57
34	EXODEVICE: Continuous Perfusion Large Scale Exosome Cultivation Bioreactor. , 2019, , .		0
35	Circulating blood cells and extracellular vesicles in acute cardioprotection. Cardiovascular Research, 2019, 115, 1156-1166.	3.8	106
36	Cardioprotection by cardiac progenitor cell-secreted exosomes: role of pregnancy-associated plasma protein-A. Cardiovascular Research, 2018, 114, 992-1005.	3.8	178

#	Article	IF	CITATIONS
37	ALDH1A3 Is the Key Isoform That Contributes to Aldehyde Dehydrogenase Activity and Affects in Vitro Proliferation in Cardiac Atrial Appendage Progenitor Cells. Frontiers in Cardiovascular Medicine, 2018, 5, 90.	2.4	19
38	Notch pathway activation enhances cardiosphere in vitro expansion. Journal of Cellular and Molecular Medicine, 2018, 22, 5583-5595.	3.6	7
39	Exosomes From Human Cardiac Progenitor Cells for Therapeutic Applications: Development of a GMP-Grade Manufacturing Method. Frontiers in Physiology, 2018, 9, 1169.	2.8	133
40	Roles of exosomes in cardioprotection. European Heart Journal, 2017, 38, ehw304.	2.2	213
41	First Characterization of Human Amniotic Fluid Stem Cell Extracellular Vesicles as a Powerful Paracrine Tool Endowed with Regenerative Potential. Stem Cells Translational Medicine, 2017, 6, 1340-1355.	3.3	104
42	Exosomes: Therapy delivery tools and biomarkers of diseases. , 2017, 174, 63-78.		761
43	Beneficial effects of exosomes secreted by cardiac-derived progenitor cells and other cell types in myocardial ischemia. Stem Cell Investigation, 2017, 4, 93-93.	3.0	63
44	OUP accepted manuscript. Europace, 2016, 18, iv67-iv76.	1.7	8
45	Induced Pluripotent Stem (IPS) Cells to Assess the Cardioprotective and Proangiogenic Activities of Exosomes Secreted by Human Cardiac Progenitor Cells. Biophysical Journal, 2016, 110, 595a-596a.	0.5	1
46	Exosomes for Intramyocardial Intercellular Communication. Stem Cells International, 2015, 2015, 1-10.	2.5	92
47	Combination of miRNA499 and miRNA133 Exerts a Synergic Effect on Cardiac Differentiation. Stem Cells, 2015, 33, 1187-1199.	3.2	31
48	Epigenetic Regulation of Myocardial Homeostasis, Self-Regeneration and Senescence. Current Drug Targets, 2015, 16, 827-842.	2.1	8
49	Ranolazine prevents INaL enhancement and blunts myocardial remodelling in a model of pulmonary hypertension. Cardiovascular Research, 2014, 104, 37-48.	3.8	42
50	Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovascular Research, 2014, 103, 530-541.	3.8	601
51	Altered functional differentiation of mesoangioblasts in a genetic myopathy. Journal of Cellular and Molecular Medicine, 2013, 17, 419-428.	3.6	3
52	Human Cardiospheres as a Source of Multipotent Stem and Progenitor Cells. Stem Cells International, 2013, 2013, 1-10.	2.5	35
53	Ultrastructural Evidence of Exosome Secretion by Progenitor Cells in Adult Mouse Myocardium and Adult Human Cardiospheres. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-10.	3.0	70
54	Aberrant Functional Differentiation of Cardiac Precursors from a Dystrophic Mouse. Biophysical Journal, 2012, 102, 674a.	0.5	0

#	Article	IF	CITATIONS
55	Prevention of Myocardial Remodeling by Chronic INaL Blockade in Pulmonary Hypertension. Biophysical Journal, 2012, 102, 340a.	0.5	0
56	Isolation and Expansion of Adult Cardiac Stem/Progenitor Cells in the Form of Cardiospheres from Human Cardiac Biopsies and Murine Hearts. Methods in Molecular Biology, 2012, 879, 327-338.	0.9	57
57	Prometheus's heart: what lies beneath. Journal of Cellular and Molecular Medicine, 2012, 16, 228-236.	3.6	11
58	Induced pluripotent stem cells: progress towards a biomedical application. Expert Review of Cardiovascular Therapy, 2011, 9, 1265-1269.	1.5	2
59	Bone marrowâ€derived cells can acquire cardiac stem cells properties in damaged heart. Journal of Cellular and Molecular Medicine, 2011, 15, 63-71.	3.6	26
60	Cardiac Cell Therapy: The Next (Re)Generation. Stem Cell Reviews and Reports, 2011, 7, 1018-1030.	5.6	28
61	Ferritin as a reporter gene for in vivo tracking of stem cells by 1.5-T cardiac MRI in a rat model of myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H2238-H2250.	3.2	71
62	A Brugada syndrome mutation (p.S216L) and its modulation by p.H558R polymorphism: standard and dynamic characterization. Cardiovascular Research, 2011, 91, 606-616.	3.8	50
63	Evidence for the Existence of Resident Cardiac Stem Cells. , 2011, , 131-147.		0
64	Caffeine-induced Ca2+ signaling as an index of cardiac progenitor cells differentiation. Basic Research in Cardiology, 2010, 105, 737-749.	5.9	20
65	Cardiospheres and tissue engineering for myocardial regeneration: potential for clinical application. Journal of Cellular and Molecular Medicine, 2010, 14, no-no.	3.6	30
66	c-kit cardiac progenitor cells: What is their potential?. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, E78; author reply E79.	7.1	8
67	Differentiation of human adult cardiac stem cells exposed to extremely low-frequency electromagnetic fields. Cardiovascular Research, 2009, 82, 411-420.	3.8	104
68	New Perspectives to Repair a Broken Heart. Cardiovascular and Hematological Agents in Medicinal Chemistry, 2009, 7, 91-107.	1.0	26
69	Stem cells in the heart: What's the buzz all about? Part 2: Arrhythmic risks and clinical studies. Heart Rhythm, 2008, 5, 880-887.	0.7	49
70	Stem cells in the heart: What's the buzz all about?—Part 1: Preclinical considerations. Heart Rhythm, 2008, 5, 749-757.	0.7	44
71	Ion Cyclotron Resonance as a Tool in Regenerative Medicine. Electromagnetic Biology and Medicine, 2008, 27, 127-133.	1.4	34
72	Extremely low frequency magnetic field induces differentiation of the human cardiac stem cells. Journal of Molecular and Cellular Cardiology, 2007, 42, S91.	1.9	0

#	Article	IF	CITATIONS
73	Cardiac stem cells can be generated in damaged heart from bone marrow-derived cells. Journal of Molecular and Cellular Cardiology, 2007, 42, S100.	1.9	1
74	Cardiac stem cells: isolation, expansion and experimental use for myocardial regeneration. Nature Clinical Practice Cardiovascular Medicine, 2007, 4, S9-S14.	3.3	94
75	Regenerative Potential of Cardiosphere-Derived Cells Expanded From Percutaneous Endomyocardial Biopsy Specimens. Circulation, 2007, 115, 896-908.	1.6	1,074
76	Endogenous Cardiac Stem Cells. Progress in Cardiovascular Diseases, 2007, 50, 31-48.	3.1	229
77	Low levels of mycophenolic acid induce differentiation of human neuroblastoma cell lines. International Journal of Cancer, 2004, 112, 352-354.	5.1	8
78	Potential Role of Mycophenolate Mofetil in the Management of Neuroblastoma Patients. Nucleosides, Nucleotides and Nucleic Acids, 2004, 23, 1545-1549.	1.1	9
79	Cyclic Nucleotides and Neuroblastoma Differentiation. Nucleosides, Nucleotides and Nucleic Acids, 2004, 23, 1551-1554.	1.1	4
80	Investigating the Paracrine Role of Perinatal Derivatives: Human Amniotic Fluid Stem Cell-Extracellular Vesicles Show Promising Transient Potential for Cardiomyocyte Renewal. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	1