
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5184355/publications.pdf Version: 2024-02-01

DIFTLENS

#	Article	IF	CITATIONS
1	Bio-oil production from oleaginous microorganisms using hydrothermal liquefaction: A biorefinery approach. Critical Reviews in Environmental Science and Technology, 2022, 52, 356-394.	12.8	21
2	Biohythane production from food waste in a two-stage process: assessing the energy recovery potential. Environmental Technology (United Kingdom), 2022, 43, 2190-2196.	2.2	21
3	Methanotrophic denitrification in wastewater treatment: microbial aspects and engineering strategies. Critical Reviews in Biotechnology, 2022, 42, 145-161.	9.0	6
4	Selective butanol production from carbon monoxide by an enriched anaerobic culture. Science of the Total Environment, 2022, 806, 150579.	8.0	13
5	Biofilm carrier type affects biogenic sulfur-driven denitrification performance and microbial community dynamics in moving-bed biofilm reactors. Chemosphere, 2022, 287, 131975.	8.2	14
6	Microbial community assembly and dynamics in Granular, Fixed-Biofilm and planktonic microbiomes valorizing Long-Chain fatty acids at 20°C. Bioresource Technology, 2022, 343, 126098.	9.6	8
7	Novel electro-ion substitution strategy in electrodialysis for ammonium recovery from digested sludge centrate in coastal regions. Journal of Membrane Science, 2022, 642, 120001.	8.2	10
8	Biological biogas purification: Recent developments, challenges and future prospects. Journal of Environmental Management, 2022, 304, 114198.	7.8	31
9	What is the energy balance of electrofuels produced through power-to-fuel integration with biogas facilities?. Renewable and Sustainable Energy Reviews, 2022, 155, 111886.	16.4	12
10	Effect of <scp>pH</scp> on lactic acid fermentation of food waste using different mixed culture inocula. Journal of Chemical Technology and Biotechnology, 2022, 97, 950-961.	3.2	13
11	Biological removal of gasâ€phase <scp>H₂S</scp> in hollow fibre membrane bioreactors. Journal of Chemical Technology and Biotechnology, 2022, 97, 1149-1161.	3.2	5
12	Syngas Fermentation for Bioenergy Production: Advances in Bioreactor Systems. Applied Environmental Science and Engineering for A Sustainable Future, 2022, , 325-358.	0.5	0
13	Pretreatment of Lignocellulosic Materials to Enhance their Methane Potential. Applied Environmental Science and Engineering for A Sustainable Future, 2022, , 85-120.	0.5	3
14	Adsorptive removal of gallium from aqueous solution onto biogenic elemental tellurium nanoparticles. Separation and Purification Technology, 2022, 286, 120462.	7.9	22
15	Land-use change and valorisation of feedstock side-streams determine the climate mitigation potential of bioplastics. Resources, Conservation and Recycling, 2022, 180, 106185.	10.8	16
16	Rapid start-up of photo-granule process in a photo-sequencing batch reactor under low aeration conditions: Effect of inoculum AGS size. Science of the Total Environment, 2022, 820, 153204.	8.0	20
17	Effect of Endogenous and Exogenous Butyric Acid on Butanol Production From CO by Enriched Clostridia. Frontiers in Bioengineering and Biotechnology, 2022, 10, 828316.	4.1	2
18	Polyhydroxyalkanoate bio-production and its rise as biomaterial of the future. Journal of Biotechnology, 2022, 348, 10-25.	3.8	48

#	Article	IF	CITATIONS
19	Gauging sediment microbial fuel cells using open-circuit auxiliary electrodes. Journal of Power Sources, 2022, 527, 231216.	7.8	4
20	Role of rotating speed on the stability of a self-sustaining algal-bacterial photo-granules process. Bioresource Technology, 2022, 353, 127134.	9.6	2
21	Screening for suitable mixed microbial consortia from anaerobic sludge and animal dungs for biodegradation of brewery spent grain. Biomass and Bioenergy, 2022, 159, 106396.	5.7	4
22	A novel strategy for rapid development of a self-sustaining symbiotic algal-bacterial granular sludge: Applying algal-mycelial pellets as nuclei. Water Research, 2022, 214, 118210.	11.3	61
23	Enhanced removal of hydrocarbons BTX by light-driven Aspergillus niger ZnS nanobiohybrids. Enzyme and Microbial Technology, 2022, 157, 110020.	3.2	9
24	Light driven Aspergillus niger-ZnS nanobiohybrids for degradation of methyl orange. Chemosphere, 2022, 298, 134162.	8.2	18
25	Enhanced solventogenesis in syngas bioconversion: Role of process parameters and thermodynamics. Chemosphere, 2022, 299, 134425.	8.2	13
26	Enhanced anaerobic digestion of dairy wastewater in a granular activated carbon amended sequential batch reactor. GCB Bioenergy, 2022, 14, 840-857.	5.6	10
27	Anaerobic co-digestion of dissolved air floatation slurry and selenium rich wastewater for simultaneous methane production and selenium bioremediation. International Biodeterioration and Biodegradation, 2022, 172, 105425.	3.9	9
28	Unravelling the biodegradation performance and mechanisms of acid orange 7 by aerobic granular sludge at different salinity levels. Bioresource Technology, 2022, 357, 127347.	9.6	13
29	Selective removal and recovery of gallium and germanium from synthetic zinc refinery residues using biosorption and bioprecipitation. Journal of Environmental Management, 2022, 317, 115396.	7.8	14
30	Selenite and tellurite reduction by Aspergillus niger fungal pellets using lignocellulosic hydrolysate. Journal of Hazardous Materials, 2022, 437, 129333.	12.4	10
31	Green extraction and esterification of marine polysaccharide (ulvan) from green macroalgae Ulva sp. using citric acid for hydrogel preparation. Journal of Cleaner Production, 2022, 366, 132952.	9.3	13
32	Biological selenate and selenite reduction by waste activated sludge using hydrogen as electron donor. Journal of Environmental Management, 2022, 319, 115745.	7.8	4
33	Two step process for volatile fatty acid production from brewery spent grain: Hydrolysis and direct acidogenic fermentation using anaerobic granular sludge. Process Biochemistry, 2021, 100, 272-283.	3.7	31
34	Silicone membrane contactor for selective volatile fatty acid and alcohol separation. Chemical Engineering Research and Design, 2021, 148, 125-136.	5.6	8
35	Carboxylic acids production and electrosynthetic microbial community evolution under different CO2 feeding regimens. Bioelectrochemistry, 2021, 137, 107686.	4.6	41
36	Chromium mobility in ultramafic areas affected by mining activities in Barro Alto massif, Brazil: An isotopic study. Chemical Geology, 2021, 561, 120000.	3.3	11

#	Article	IF	CITATIONS
37	Cadmium Selenide Formation Influences the Production and Characteristics of Extracellular Polymeric Substances of Anaerobic Granular Sludge. Applied Biochemistry and Biotechnology, 2021, 193, 965-980.	2.9	5
38	Homoacetogenesis and solventogenesis from H2/CO2 by granular sludge at 25, 37 and 55°C. Chemosphere, 2021, 265, 128649.	8.2	19
39	In situ electrochemical oxidation in electrodialysis for antibiotics removal during nutrient recovery from pig manure digestate. Chemical Engineering Journal, 2021, 413, 127485.	12.7	18
40	Technologies for removal of hydrogen sulfide (H2S) from biogas. , 2021, , 295-320.		10
41	Magnetic properties of biogenic selenium nanomaterials. Environmental Science and Pollution Research, 2021, 28, 40264-40274.	5.3	6
42	Addition of granular activated carbon during anaerobic oleate degradation overcomes inhibition and promotes methanogenic activity. Environmental Science: Water Research and Technology, 2021, 7, 762-774.	2.4	4
43	Anaerobic digestion of dissolved air floatation slurries: Effect of substrate concentration and pH. Environmental Technology and Innovation, 2021, 21, 101352.	6.1	15
44	Dynamic modeling of anaerobic methane oxidation coupled to sulfate reduction: role of elemental sulfur as intermediate. Bioprocess and Biosystems Engineering, 2021, 44, 855-874.	3.4	5
45	RESB: 20Âyears of environmental science and bio/technology for sustainable development. Reviews in Environmental Science and Biotechnology, 2021, 20, 1-3.	8.1	1
46	Bioethanol Production From H2/CO2 by Solventogenesis Using Anaerobic Granular Sludge: Effect of Process Parameters. Frontiers in Microbiology, 2021, 12, 647370.	3.5	3
47	Effect of voltage intensity on the nutrient removal performance and microbial community in the iron electrolysis-integrated aerobic granular sludge system. Environmental Pollution, 2021, 274, 116604.	7.5	17
48	Methanogenic granule growth and development is a continual process characterized by distinct morphological features. Journal of Environmental Management, 2021, 286, 112229.	7.8	7
49	Evolution of the sludge mineral composition enhances operation performance of the aerobic granular sludge reactor coupled with iron electrolysis. Journal of Cleaner Production, 2021, 295, 126394.	9.3	6
50	Environmental performance comparison of bioplastics and petrochemical plastics: A review of life cycle assessment (LCA) methodological decisions. Resources, Conservation and Recycling, 2021, 168, 105451.	10.8	169
51	Effect of methanol-organosolv pretreatment on anaerobic digestion of lignocellulosic materials. Renewable Energy, 2021, 169, 1000-1012.	8.9	46
52	Anaerobic digestion of dairy wastewater by side-stream membrane reactors: Comparison of feeding regime and its impact on sludge filterability. Environmental Technology and Innovation, 2021, 22, 101482.	6.1	14
53	Continuous Volatile Fatty Acid Production From Acid Brewery Spent Grain Leachate in Expanded Granular Sludge Bed Reactors. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	13
54	Enrichment of Autotrophic Denitrifiers From Anaerobic Sludge Using Sulfurous Electron Donors. Frontiers in Microbiology, 2021, 12, 678323.	3.5	19

#	Article	IF	CITATIONS
55	Granular activated carbon supplementation enhances anaerobic digestion of lipid-rich wastewaters. Renewable Energy, 2021, 171, 958-970.	8.9	28
56	Evaluation of selenium-enriched microalgae produced on domestic wastewater as biostimulant and biofertilizer for growth of selenium-enriched crops. Journal of Applied Phycology, 2021, 33, 3027-3039.	2.8	16
57	Kinetic modeling of hydrogen and L-lactic acid production by Thermotoga neapolitana via capnophilic lactic fermentation of starch. Bioresource Technology, 2021, 332, 125127.	9.6	9
58	Production of selenium-enriched microalgae as potential feed supplement in high-rate algae ponds treating domestic wastewater. Bioresource Technology, 2021, 333, 125239.	9.6	32
59	Metal Extraction and Recovery from Mobile Phone PCBs by a Combination of Bioleaching and Precipitation Processes. Minerals (Basel, Switzerland), 2021, 11, 1004.	2.0	10
60	Valorization of selenium-enriched sludge and duckweed generated from wastewater as micronutrient biofertilizer. Chemosphere, 2021, 281, 130767.	8.2	8
61	Environmental performance of bioplastic packaging on fresh food produce: A consequential life cycle assessment. Journal of Cleaner Production, 2021, 317, 128377.	9.3	34
62	Simultaneous removal of lead and selenium through biomineralization as lead selenide by anaerobic granular sludge. Journal of Hazardous Materials, 2021, 420, 126663.	12.4	17
63	A Review of Microalgal Biofilm Technologies: Definition, Applications, Settings and Analysis. Frontiers in Chemical Engineering, 2021, 3, .	2.7	28
64	A Distinct, Flocculent, Acidogenic Microbial Community Accompanies Methanogenic Granules in Anaerobic Digesters. Microbiology Spectrum, 2021, 9, e0078421.	3.0	4
65	Enhanced Ethanol Production From Carbon Monoxide by Enriched Clostridium Bacteria. Frontiers in Microbiology, 2021, 12, 754713.	3.5	5
66	Volatile fatty acid adsorption on anion exchange resins: kinetics and selective recovery of acetic acid. Separation Science and Technology, 2020, 55, 1449-1461.	2.5	27
67	A sustainable strategy for effective regulation of aerobic granulation: Augmentation of the signaling molecule content by cultivating AHL-producing strains. Water Research, 2020, 169, 115193.	11.3	69
68	Resilient performance of an anoxic biotrickling filter for hydrogen sulphide removal from a biogas mimic: Steady, transient state and neural network evaluation. Journal of Cleaner Production, 2020, 249, 119351.	9.3	24
69	Microbial electrochemical technologies: Electronic circuitry and characterization tools. Biosensors and Bioelectronics, 2020, 150, 111884.	10.1	36
70	Microalgal-bacterial consortia: From interspecies interactions to biotechnological applications. Renewable and Sustainable Energy Reviews, 2020, 118, 109563.	16.4	210
71	The dairy biorefinery: Integrating treatment processes for cheese whey valorisation. Journal of Environmental Management, 2020, 276, 111240.	7.8	99
72	Pre-treatment and temperature effects on the use of slow release electron donor for biological sulfate reduction. Journal of Environmental Management, 2020, 275, 111216.	7.8	7

#	Article	lF	CITATIONS
73	Algae based microbial fuel cells for wastewater treatment and recovery of value-added products. Renewable and Sustainable Energy Reviews, 2020, 132, 110041.	16.4	127
74	Organic waste biorefineries: Looking towards implementation. Waste Management, 2020, 114, 274-286.	7.4	91
75	Photocatalytic degradation of Congo Red by zinc sulfide quantum dots produced by anaerobic granular sludge. Environmental Technology (United Kingdom), 2020, , 1-10.	2.2	12
76	Long Chain Fatty Acid Degradation Coupled to Biological Sulfidogenesis: A Prospect for Enhanced Metal Recovery. Frontiers in Bioengineering and Biotechnology, 2020, 8, 550253.	4.1	12
77	Enhanced Methanization of Long-Chain Fatty Acid Wastewater at 20°C in the Novel Dynamic Sludge Chamber–Fixed Film Bioreactor. Frontiers in Energy Research, 2020, 8, .	2.3	9
78	Fermentative hydrogen production from cheese whey with in-line, concentration gradient-driven butyric acid extraction. International Journal of Hydrogen Energy, 2020, 45, 24453-24466.	7.1	59
79	Selenate and selenite uptake, accumulation and toxicity in Lemna minuta. Water Science and Technology, 2020, 81, 1852-1862.	2.5	9
80	Early colonization stages of fabric carriers by two Chlorella strains. Journal of Applied Phycology, 2020, 32, 3631-3644.	2.8	6
81	Biological Sulfate Reduction Using Gaseous Substrates To Treat Acid Mine Drainage. Current Pollution Reports, 2020, 6, 328-344.	6.6	22
82	Propionate Production by Bioelectrochemically-Assisted Lactate Fermentation and Simultaneous CO2 Recycling. Frontiers in Microbiology, 2020, 11, 599438.	3.5	14
83	Sulfidogenesis establishment under increasing metal and nutrient concentrations: An effective approach for biotreating sulfate-rich wastewaters using an innovative structured-bed reactor (AnSTBR). Bioresource Technology Reports, 2020, 11, 100458.	2.7	4
84	Biological Removal of Selenate and Selenite from Wastewater: Options for Selenium Recovery as Nanoparticles. Current Pollution Reports, 2020, 6, 230-249.	6.6	43
85	Volatile fatty acid production from Kraft mill foul condensate in upflow anaerobic sludge blanket reactors. Environmental Technology (United Kingdom), 2020, 42, 1-14.	2.2	4
86	OpenTCC: An open source low-cost temperature-control chamber. HardwareX, 2020, 7, e00099.	2.2	16
87	Recycling of European plastic is a pathway for plastic debris in the ocean. Environment International, 2020, 142, 105893.	10.0	83
88	Effect of tungsten and selenium on C1 gas bioconversion by an enriched anaerobic sludge and microbial community analysis. Chemosphere, 2020, 250, 126105.	8.2	20
89	Effect of selenate and thiosulfate on anaerobic methanol degradation usingÂactivated sludge. Environmental Science and Pollution Research, 2020, 27, 29804-29811.	5.3	0
90	Production of selenium- and zinc-enriched Lemna and Azolla as potential micronutrient-enriched bioproducts. Water Research, 2020, 172, 115522.	11.3	16

#	Article	IF	CITATIONS
91	Draft Genome Sequence and Annotation of Paracoccus versutus MAL 1HM19, a Nitrate-Reducing, Sulfide-Oxidizing Bacterium. Microbiology Resource Announcements, 2020, 9, .	0.6	2
92	Performance of AnMBR in Treatment of Post-consumer Food Waste: Effect of Hydraulic Retention Time and Organic Loading Rate on Biogas Production and Membrane Fouling. Frontiers in Bioengineering and Biotechnology, 2020, 8, 594936.	4.1	6
93	Cathodic selenium recovery in bioelectrochemical system: Regulatory influence on anodic electrogenic activity. Journal of Hazardous Materials, 2020, 399, 122843.	12.4	15
94	CO2 Biofixation by Chlamydomonas reinhardtii Using Different CO2 Dosing Strategies. Advances in Science, Technology and Innovation, 2020, , 321-324.	0.4	2
95	Treatment and reuse of solid materials containing inorganic sulfur compounds. , 2020, , 477-514.		0
96	Septage composition and pollution fluxes from cesspits in Palestine. Journal of Water Sanitation and Hygiene for Development, 2020, 10, 905-915.	1.8	2
97	In situ and ex situ bioremediation of seleniferous soils from northwestern India. Journal of Soils and Sediments, 2019, 19, 762-773.	3.0	16
98	Anaerobic treatment of LCFA-containing synthetic dairy wastewater at 20â€ [−] °C: Process performance and microbial community dynamics. Science of the Total Environment, 2019, 691, 960-968.	8.0	29
99	Reduction of selenite to elemental Se(0) with simultaneous degradation of phenol by co-cultures of Phanerochaete chrysosporium and Delftia lacustris. Journal of Microbiology, 2019, 57, 738-747.	2.8	10
100	Physiology and Distribution of Archaeal Methanotrophs That Couple Anaerobic Oxidation of Methane with Sulfate Reduction. Microbiology and Molecular Biology Reviews, 2019, 83, .	6.6	64
101	Bacterial community analysis of sulfate-reducing granular sludge exposed to high concentrations of uranium. Journal of Water Supply: Research and Technology - AQUA, 2019, 68, 645-654.	1.4	6
102	Adsorptive recovery of alcohols from a model syngas fermentation broth. Fuel, 2019, 254, 115590.	6.4	8
103	H2-rich biogas recirculation prevents hydrogen supersaturation and enhances hydrogen production by Thermotoga neapolitana cf. capnolactica. International Journal of Hydrogen Energy, 2019, 44, 19698-19708.	7.1	9
104	Anaerobic methane oxidation coupled to sulfate reduction in a biotrickling filter: Reactor performance and microbial community analysis. Chemosphere, 2019, 236, 124290.	8.2	15
105	Adsorptive removal of alcohols from aqueous solutions by N-tertiary-butylacrylamide (NtBA) and acrylic acid co-polymer gel. Materials Today Communications, 2019, 21, 100653.	1.9	2
106	A Preliminary Study of the Effect of Bioavailable Fe and Co on the Anaerobic Digestion of Rice Straw. Energies, 2019, 12, 577.	3.1	18
107	Start-up of a nutrient removal system using Scenedesmus vacuolatus and Chlorella vulgaris biofilms. Bioresources and Bioprocessing, 2019, 6, .	4.2	25
108	High rate continuous biohydrogen production by hyperthermophilic Thermotoga neapolitana. Bioresource Technology, 2019, 293, 122033.	9.6	7

#	Article	IF	CITATIONS
109	Power production and microbial community composition in thermophilic acetate-fed up-flow and flow-through microbial fuel cells. Bioresource Technology, 2019, 294, 122115.	9.6	41
110	Electron donors for autotrophic denitrification. Chemical Engineering Journal, 2019, 362, 922-937.	12.7	327
111	Transient–state operation of an anoxic biotrickling filter for H2S removal. Journal of Hazardous Materials, 2019, 377, 42-51.	12.4	33
112	Investigating the performance of internet of things based anaerobic digestion of food waste. Chemical Engineering Research and Design, 2019, 127, 277-287.	5.6	57
113	Long-term performance evaluation of an anoxic sulfur oxidizing moving bed biofilm reactor under nitrate limited conditions. Environmental Science: Water Research and Technology, 2019, 5, 1072-1081.	2.4	14
114	Acetotrophic Activity Facilitates Methanogenesis from LCFA at Low Temperatures: Screening from Mesophilic Inocula. Archaea, 2019, 2019, 1-16.	2.3	15
115	Effects of anode materials on electricity production from xylose and treatability of TMP wastewater in an up-flow microbial fuel cell. Chemical Engineering Journal, 2019, 372, 141-150.	12.7	33
116	Influence of recirculation over COD and N-NH4 removals from landfill leachate by horizontal flow constructed treatment wetland. International Journal of Phytoremediation, 2019, 21, 998-1004.	3.1	16
117	Simultaneous synthesis of lactic acid and hydrogen from sugars via capnophilic lactic fermentation by Thermotoga neapolitana cf capnolactica. Biomass and Bioenergy, 2019, 125, 17-22.	5.7	18
118	Biorefineries: Industrial Innovation and Tendencies. , 2019, , 3-35.		5
119	Selective enrichment of biocatalysts for bioelectrochemical systems: A critical review. Renewable and Sustainable Energy Reviews, 2019, 109, 10-23.	16.4	74
120	Microbial transformation of Se oxyanions in cultures of Delftia lacustris grown under aerobic conditions. Journal of Microbiology, 2019, 57, 362-371.	2.8	7
121	Zeolite Ion Exchange to Facilitate Anaerobic Membrane Bioreactor Wastewater Nitrogen Recovery and Reuse for Lettuce Fertigation in Vertical Hydroponic Systems. Environmental Engineering Science, 2019, 36, 690-698.	1.6	14
122	Investigation of architecture development and phosphate distribution in <i>Chlorella</i> biofilm by complementary microscopy techniques. FEMS Microbiology Ecology, 2019, 95, .	2.7	10
123	Ammonium removal mechanisms in a microalgal-bacterial sequencing-batch photobioreactor at different solids retention times. Algal Research, 2019, 39, 101468.	4.6	34
124	Removal of selenate and cadmium by anaerobic granular sludge: EPS characterization and microbial community analysis. Chemical Engineering Research and Design, 2019, 126, 150-159.	5.6	25
125	Pressure Selects Dominant Anaerobic Methanotrophic Phylotype and Sulfate Reducing Bacteria in Coastal Marine Lake Grevelingen Sediment. Frontiers in Environmental Science, 2019, 6, .	3.3	16
126	Bioreduction of selenate in an anaerobic biotrickling filter using methanol as electron donor. Chemosphere, 2019, 225, 406-413.	8.2	17

0

#	Article	IF	CITATIONS
127	Influence of liquid-phase hydrogen on dark fermentation by Thermotoga neapolitana. Renewable Energy, 2019, 140, 354-360.	8.9	9
128	Nutrient removal efficiency of green algal strains at high phosphate concentrations. Water Science and Technology, 2019, 80, 1832-1843.	2.5	10
129	H2S removal and microbial community composition in an anoxic biotrickling filter under autotrophic and mixotrophic conditions. Journal of Hazardous Materials, 2019, 367, 397-406.	12.4	65
130	Assessing arsenic redox state evolution in solution and solid phase during As(III) sorption onto chemically-treated sewage sludge digestate biochars. Bioresource Technology, 2019, 275, 232-238.	9.6	34
131	Effect of feed glucose and acetic acid on continuous biohydrogen production by Thermotoga neapolitana. Bioresource Technology, 2019, 273, 416-424.	9.6	15
132	Effect of light intensity on the characteristics of algal-bacterial granular sludge and the role of N-acyl-homoserine lactone in the granulation. Science of the Total Environment, 2019, 659, 372-383.	8.0	78
133	Effect of ammonium, electron donor and sulphate transient feeding conditions on sulphidogenesis in sequencing batch bioreactors. Bioresource Technology, 2019, 276, 288-299.	9.6	0
134	Simultaneous removal of sulfate and selenate from wastewater by process integration of an ion exchange column and upflow anaerobic sludge blanket bioreactor. Separation Science and Technology, 2019, 54, 1387-1399.	2.5	10
135	Removal and Recovery of Metals and Nutrients From Wastewater Using Bioelectrochemical Systems. , 2019, , 693-720.		7
136	Enrichment of a solventogenic anaerobic sludge converting carbon monoxide and syngas into acids and alcohols. Bioresource Technology, 2019, 272, 130-136.	9.6	38
137	Continuous biological removal of selenate in the presence of cadmium and zinc in UASB reactors at psychrophilic and mesophilic conditions. Biochemical Engineering Journal, 2019, 141, 102-111.	3.6	20
138	Enrichment of Anaerobic Methanotrophs in Biotrickling Filters Using Different Sulfur Compounds as Electron Acceptor. Environmental Engineering Science, 2019, 36, 431-443.	1.6	5
139	Comparison of sulphide and nitrate removal from synthetic wastewater by pure and mixed cultures of nitrate-reducing, sulphide-oxidizing bacteria. Bioresource Technology, 2019, 272, 40-47.	9.6	38
140	Lactic acid recovery from a model of <i>Thermotoga neapolitana</i> fermentation broth using ion exchange resins in batch and fixed-bed reactors. Separation Science and Technology, 2019, 54, 1008-1025.	2.5	21
141	Fluoride removal from groundwater using chemically modified rice husk and corn cob activated carbon. Environmental Technology (United Kingdom), 2019, 40, 2913-2927.	2.2	28
142	Selenium Remediation Using Granular and Biofilm Systems. , 2019, , 103-127.		2
143	Anaerobic digestion processes. , 2019, , .		0

Role of Extracellular Polymeric Substances (EPS) in Cell Surface Hydrophobicity. , 2019, , 128-153.

#	Article	IF	CITATIONS
145	Elemental sulfur-based autotrophic denitrification and denitritation: microbially catalyzed sulfur hydrolysis and nitrogen conversions. Journal of Environmental Management, 2018, 211, 313-322.	7.8	72
146	Assessing chromium mobility in natural surface waters: Colloidal contribution to the isotopically exchangeable pool of chromium (EwCr value). Applied Geochemistry, 2018, 92, 19-29.	3.0	4
147	Effect of N/S ratio on anoxic thiosulfate oxidation in a fluidized bed reactor: Experimental and artificial neural network model analysis. Process Biochemistry, 2018, 68, 171-181.	3.7	27
148	Optimization of Petroleum Refinery Wastewater Treatment by Vertical Flow Constructed Wetlands Under Tropical Conditions: Plant Species Selection and Polishing by a Horizontal Flow Constructed Wetland. Water, Air, and Soil Pollution, 2018, 229, 1.	2.4	13
149	Performance evaluation of duplex constructed wetlands for the treatment of diesel contaminated wastewater. Chemosphere, 2018, 205, 166-177.	8.2	37
150	Enrichment of ANMEâ€2 dominated anaerobic methanotrophy from cold seep sediment in an external ultrafiltration membrane bioreactor. Engineering in Life Sciences, 2018, 18, 368-378.	3.6	6
151	Bioleaching of metals from WEEE shredding dust. Journal of Environmental Management, 2018, 210, 180-190.	7.8	89
152	Formation of Se(0), Te(0), and Se(0)–Te(0) nanostructures during simultaneous bioreduction of selenite and tellurite in a UASB reactor. Applied Microbiology and Biotechnology, 2018, 102, 2899-2911.	3.6	31
153	Assessment of Bacterial Community Composition of Anaerobic Granular Sludge in Response to Short-Term Uranium Exposure. Microbial Ecology, 2018, 76, 648-659.	2.8	9
154	Selenate removal in biofilm systems: effect of nitrate and sulfate on selenium removal efficiency, biofilm structure and microbial community. Journal of Chemical Technology and Biotechnology, 2018, 93, 2380-2389.	3.2	20
155	Composition and role of the attached and planktonic microbial communities in mesophilic and thermophilic xylose-fed microbial fuel cells. RSC Advances, 2018, 8, 3069-3080.	3.6	17
156	Increased biogas production from wheat straw by chemical pretreatments. Renewable Energy, 2018, 119, 608-614.	8.9	141
157	Bioprocesses for Sulphate Removal from Wastewater. Energy, Environment, and Sustainability, 2018, , 35-60.	1.0	4
158	Zn isotopes fractionation during slags' weathering: One source of contamination, multiple isotopic signatures. Chemosphere, 2018, 195, 483-490.	8.2	14
159	Fungal-Based Nanotechnology for Heavy Metal Removal. Environmental Chemistry for A Sustainable World, 2018, , 229-253.	0.5	4
160	Environmental impact and bioremediation of seleniferous soils and sediments. Critical Reviews in Biotechnology, 2018, 38, 941-956.	9.0	47
161	The attachment potential and N-acyl-homoserine lactone-based quorum sensing in aerobic granular sludge and algal-bacterial granular sludge. Applied Microbiology and Biotechnology, 2018, 102, 5343-5353.	3.6	41
162	Performance of a biotrickling filter for the anaerobic utilization of gas-phase methanol coupled to thiosulphate reduction and resource recovery through volatile fatty acids production. Bioresource Technology, 2018, 263, 591-600.	9.6	12

#	Article	IF	CITATIONS
163	Comparative performance of anaerobic attached biofilm and granular sludge reactors for the treatment of model mine drainage wastewater containing selenate, sulfate and nickel. Chemical Engineering Journal, 2018, 345, 545-555.	12.7	43
164	Alteration of the characteristics of extracellular polymeric substances (EPS) extracted from the fungus Phanerochaete chrysosporium when exposed to sub-toxic concentrations of nickel (II). International Biodeterioration and Biodegradation, 2018, 129, 179-188.	3.9	25
165	Anaerobic Digestion of Lignocellulosic Materials Using Ethanol-Organosolv Pretreatment. Environmental Engineering Science, 2018, 35, 953-960.	1.6	20
166	Enrichment of sulfate reducing anaerobic methane oxidizing community dominated by ANME-1 from Ginsburg Mud Volcano (Gulf of Cadiz) sediment in a biotrickling filter. Bioresource Technology, 2018, 259, 433-441.	9.6	17
167	Thermophilic versus mesophilic dark fermentation in xylose-fed fluidised bed reactors: Biohydrogen production and active microbial community. International Journal of Hydrogen Energy, 2018, 43, 5473-5485.	7.1	34
168	Tools, techniques, and technologies for pollution prevention, control, and resource recovery. Environmental Science and Pollution Research, 2018, 25, 5047-5050.	5.3	10
169	Microbial sulfate-reducing activities in anoxic sediment from Marine Lake Grevelingen: screening of electron donors and acceptors. Limnology, 2018, 19, 31-41.	1.5	6
170	Bioaugmentation of the anaerobic digestion of food waste by dungs of herbivore, carnivore, and omnivore zoo animals. Environmental Technology (United Kingdom), 2018, 39, 516-526.	2.2	12
171	Lignocellulosic biowastes as carrier material and slow release electron donor for sulphidogenesis of wastewater in an inverse fluidized bed bioreactor. Environmental Science and Pollution Research, 2018, 25, 5115-5128.	5.3	15
172	Fate of heavy metals in vertical subsurface flow constructed wetlands treating secondary treated petroleum refinery wastewater in Kaduna, Nigeria. International Journal of Phytoremediation, 2018, 20, 44-53.	3.1	48
173	Effect of total solids content on biohydrogen production and lactic acid accumulation during dark fermentation of organic waste biomass. Bioresource Technology, 2018, 248, 180-186.	9.6	56
174	Trace elements dosing and alkaline pretreatment in the anaerobic digestion of rice straw. Bioresource Technology, 2018, 247, 897-903.	9.6	79
175	Electronic waste as a secondary source of critical metals: Management and recovery technologies. Resources, Conservation and Recycling, 2018, 135, 296-312.	10.8	212
176	Simultaneous removal of selenite and phenol from wastewater in an upflow fungal pellet bioreactor. Journal of Chemical Technology and Biotechnology, 2018, 93, 1003-1011.	3.2	17
177	Enhancement of aerobic granulation and nutrient removal by an algal–bacterial consortium in a lab-scale photobioreactor. Chemical Engineering Journal, 2018, 334, 2373-2382.	12.7	177
178	Lactic acid fermentation of human excreta for agricultural application. Journal of Environmental Management, 2018, 206, 890-900.	7.8	19
179	Selenite reduction and ammoniacal nitrogen removal in an aerobic granular sludge sequencing batch reactor. Water Research, 2018, 131, 131-141.	11.3	66
180	Settling fluxes and ecotoxicological risk assessment of fine sedimentary metals in Tema Harbour (Ghana). Marine Pollution Bulletin, 2018, 126, 119-129.	5.0	3

#	Article	IF	CITATIONS
181	Nutrient removal from high strength nitrate containing industrial wastewater using Chlorella sp. strain ACUF_802. Annals of Microbiology, 2018, 68, 899-913.	2.6	11
182	Graphene Facilitates Biomethane Production from Protein-Derived Glycine in Anaerobic Digestion. IScience, 2018, 10, 158-170.	4.1	59
183	Constructed Wetlands to Treat Petroleum Wastewater. Nanotechnology in the Life Sciences, 2018, , 199-237.	0.6	9
184	Optimization of Soil Washing to Reduce the Selenium Levels of Seleniferous Soil from Punjab, Northwestern India. Journal of Environmental Quality, 2018, 47, 1530-1537.	2.0	6
185	Hydrodynamics and mathematical modelling in a low HRT inverse fluidized-bed reactor for biological sulphate reduction. Bioprocess and Biosystems Engineering, 2018, 41, 1869-1882.	3.4	5
186	Sensitivity analysis for an elemental sulfur-based two-step denitrification model. Water Science and Technology, 2018, 78, 1296-1303.	2.5	8
187	Changes of sewage sludge digestate-derived biochar properties after chemical treatments and influence on As(III and V) and Cd(II) sorption. International Biodeterioration and Biodegradation, 2018, 135, 96-102.	3.9	47
188	Biokinetics of microbial consortia using biogenic sulfur as a novel electron donor for sustainable denitrification. Bioresource Technology, 2018, 270, 359-367.	9.6	63
189	Vertical subsurface flow constructed wetlands for the removal of petroleum contaminants from secondary refinery effluent at the Kaduna refining plant (Kaduna, Nigeria). Environmental Science and Pollution Research, 2018, 25, 30451-30462.	5.3	22
190	Optimization of process parameters for the chemical leaching of base metals from telecom and desktop printed circuit boards. Chemical Engineering Research and Design, 2018, 120, 14-23.	5.6	5
191	Temperature control as key factor for optimal biohydrogen production from thermomechanical pulping wastewater. Biochemical Engineering Journal, 2018, 137, 214-221.	3.6	22
192	Phytoremediation of seleniferous soil leachate using the aquatic plants Lemna minor and Egeria densa. Ecological Engineering, 2018, 120, 321-328.	3.6	21
193	Effect of pressure and temperature on anaerobic methanotrophic activities of a highly enriched ANME-2a community. Environmental Science and Pollution Research, 2018, 25, 30031-30043.	5.3	13
194	Enhancement of hydrogen production rate by high biomass concentrations of Thermotoga neapolitana. International Journal of Hydrogen Energy, 2018, 43, 13072-13080.	7.1	12
195	Co-production of Hydrogen and Methane From the Organic Fraction of Municipal Solid Waste in a Pilot Scale Dark Fermenter and Methanogenic Biofilm Reactor. Frontiers in Environmental Science, 2018, 6, .	3.3	20
196	(Bio)leaching Behavior of Chromite Tailings. Minerals (Basel, Switzerland), 2018, 8, 261.	2.0	17
197	Biological treatment of selenium-laden wastewater containing nitrate and sulfate in an upflow anaerobic sludge bed reactor at pH 5.0. Chemosphere, 2018, 211, 684-693.	8.2	29
198	Cyanide degradation kinetics during anaerobic co-digestion of cassava pulp with pig manure. Water Science and Technology, 2018, 2017, 650-660.	2.5	3

#	Article	IF	CITATIONS
199	Lead sorption by biochar produced from digestates: Consequences of chemical modification and washing. Journal of Environmental Management, 2018, 219, 277-284.	7.8	71
200	Inoculum pretreatment differentially affects the active microbial community performing mesophilic and thermophilic dark fermentation of xylose. International Journal of Hydrogen Energy, 2018, 43, 9233-9245.	7.1	32
201	Amberlite IRA-900 Ion Exchange Resin for the Sorption of Selenate and Sulfate: Equilibrium, Kinetic, and Regeneration Studies. Journal of Environmental Engineering, ASCE, 2018, 144, 04018110.	1.4	11
202	Effect of elevated nitrate and sulfate concentrations on selenate removal by mesophilic anaerobic granular sludge bed reactors. Environmental Science: Water Research and Technology, 2018, 4, 303-314.	2.4	15
203	Leaching and selective zinc recovery from acidic leachates of zinc metallurgical leach residues. Journal of Hazardous Materials, 2017, 324, 71-82.	12.4	83
204	Bioleaching and selective biorecovery of zinc from zinc metallurgical leach residues from the Três Marias zinc plant (Minas Gerais, Brazil). Journal of Chemical Technology and Biotechnology, 2017, 92, 512-521.	3.2	23
205	Biological removal of selenate and ammonium by activated sludge in a sequencing batch reactor. Bioresource Technology, 2017, 229, 11-19.	9.6	38
206	Effect of psychrophilic temperature shocks on a gas-lift anaerobic membrane bioreactor (Gl-AnMBR) treating synthetic domestic wastewater. Journal of Water Process Engineering, 2017, 16, 108-114.	5.6	31
207	Forecasting the effect of feast and famine conditions on biological sulphate reduction in an anaerobic inverse fluidized bed reactor using artificial neural networks. Process Biochemistry, 2017, 55, 146-161.	3.7	13
208	Radioactivity concentrations and their radiological significance in sediments of the Tema Harbour (Greater Accra, Ghana). Journal of Radiation Research and Applied Sciences, 2017, 10, 63-71.	1.2	36
209	The ins and outs of microorganism–electrode electron transfer reactions. Nature Reviews Chemistry, 2017, 1, .	30.2	385
210	Shape change of biogenic elemental selenium nanomaterials from nanospheres to nanorods decreases their colloidal stability. Environmental Science: Nano, 2017, 4, 1054-1063.	4.3	33
211	Biohydrogen production from xylose by fresh and digested activated sludge at 37, 55 and 70°C. Water Research, 2017, 115, 120-129.	11.3	45
212	Biosynthesis of CdSe nanoparticles by anaerobic granular sludge. Environmental Science: Nano, 2017, 4, 824-833.	4.3	23
213	Integrated hazard, risk and impact assessment of tropical marine sediments from Tema Harbour (Chana). Chemosphere, 2017, 177, 24-34.	8.2	8
214	Assessment of DDT, HCH and PAH contamination and associated ecotoxicological risks in surface sediments of coastal Tema Harbour (Ghana). Marine Pollution Bulletin, 2017, 115, 480-488.	5.0	35
215	Hydrophobic molecular features of EPS extracted from anaerobic granular sludge treating wastewater from a paper recycling plant. Process Biochemistry, 2017, 58, 266-275.	3.7	15
216	Effects of different nickel species on autotrophic denitrification driven by thiosulfate in batch tests and a fluidized-bed reactor. Bioresource Technology, 2017, 238, 534-541.	9.6	32

#	Article	IF	CITATIONS
217	Treatment of Source-Separated Human Feces via Lactic Acid Fermentation Combined with Thermophilic Composting. Compost Science and Utilization, 2017, 25, 220-230.	1.2	13
218	Lactic acid fermentation of human urine to improve its fertilizing value and reduce odour emissions. Journal of Environmental Management, 2017, 198, 63-69.	7.8	29
219	Biomineralization of tellurium and selenium-tellurium nanoparticles by the white-rot fungus Phanerochaete chrysosporium. International Biodeterioration and Biodegradation, 2017, 124, 258-266.	3.9	39
220	Hydrogen and lactic acid synthesis by the wild-type and a laboratory strain of the hyperthermophilic bacterium Thermotoga neapolitana DSMZ 4359 T under capnophilic lactic fermentation conditions. International Journal of Hydrogen Energy, 2017, 42, 16023-16030.	7.1	23
221	Carbohydrate based polymeric materials as slow release electron donors for sulphate removal from wastewater. Journal of Environmental Management, 2017, 200, 407-415.	7.8	13
222	Special issue on environmental biotechnologies for sustainable development. International Biodeterioration and Biodegradation, 2017, 119, 1-3.	3.9	6
223	Anaerobic Methane-Oxidizing Microbial Community in a Coastal Marine Sediment: Anaerobic Methanotrophy Dominated by ANME-3. Microbial Ecology, 2017, 74, 608-622.	2.8	34
224	Anaerobic oxidation of methane coupled to thiosulfate reduction in a biotrickling filter. Bioresource Technology, 2017, 240, 214-222.	9.6	23
225	Metal mobilization from metallurgical wastes by soil organic acids. Chemosphere, 2017, 178, 197-211.	8.2	41
226	Role of microbial accumulation in biological sulphate reduction using lactate as electron donor in an inversed fluidized bed bioreactor: Operation and dynamic mathematical modelling. International Biodeterioration and Biodegradation, 2017, 121, 1-10.	3.9	8
227	A comparison of fate and toxicity of selenite, biogenically, and chemically synthesized selenium nanoparticles to zebrafish (<i>Danio rerio</i>) embryogenesis. Nanotoxicology, 2017, 11, 87-97.	3.0	61
228	High-rate autotrophic denitrification in a fluidized-bed reactor at psychrophilic temperatures. Chemical Engineering Journal, 2017, 313, 591-598.	12.7	48
229	Continuous biohydrogen production by thermophilic dark fermentation of cheese whey: Use of buffalo manure as buffering agent. International Journal of Hydrogen Energy, 2017, 42, 4861-4869.	7.1	58
230	Hydrophobic features of EPS extracted from anaerobic granular sludge: an investigation based on DAX-8 resin fractionation and size exclusion chromatography. Applied Microbiology and Biotechnology, 2017, 101, 3427-3438.	3.6	10
231	Continuous removal and recovery of tellurium in an upflow anaerobic granular sludge bed reactor. Journal of Hazardous Materials, 2017, 327, 79-88.	12.4	50
232	Metal Recovery from Industrial and Mining Wastewaters. Environmental Chemistry for A Sustainable World, 2017, , 81-114.	0.5	4
233	Industrial Selenium Pollution: Sources and Biological Treatment Technologies. , 2017, , 75-101.		12
234	Biological Sulphate Reduction. Environmental Chemistry for A Sustainable World, 2017, , 115-132.	0.5	1

#	Article	IF	CITATIONS
235	Biorecovery of Metals from Electronic Waste. Environmental Chemistry for A Sustainable World, 2017, , 241-278.	0.5	7
236	Leaching and Recovery of Metals. Environmental Chemistry for A Sustainable World, 2017, , 161-206.	0.5	10
237	Nitrification by microalgal-bacterial consortia for ammonium removal in flat panel sequencing batch photo-bioreactors. Bioresource Technology, 2017, 245, 81-89.	9.6	62
238	Immobilization of Metal Ions from Acid Mine Drainage by Coal Bottom Ash. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	6
239	Bioelectrochemical Systems for Heavy Metal Removal and Recovery. Environmental Chemistry for A Sustainable World, 2017, , 165-198.	0.5	9
240	Metal distribution and fractionation in surface sediments of coastal Tema Harbour (Ghana) and its ecological implications. Environmental Earth Sciences, 2017, 76, 1.	2.7	10
241	Techniques for Metal Removal and Recovery from Waste Stream. Environmental Chemistry for A Sustainable World, 2017, , 1-23.	0.5	1
242	Permeable Reactive Barriers for Heavy Metal Removal. Environmental Chemistry for A Sustainable World, 2017, , 65-100.	0.5	2
243	Settling fluxes and sediment accumulation rates by the combined use of sediment traps and sediment cores in Tema Harbour (Ghana). Science of the Total Environment, 2017, 609, 1114-1125.	8.0	30
244	Hydrogen sulfide oxidation under anoxic conditions by a nitrate-reducing, sulfide-oxidizing bacterium isolated from the Mae Um Long Luang hot spring, Thailand. International Biodeterioration and Biodegradation, 2017, 124, 196-205.	3.9	21
245	High-rate thiosulfate-driven denitrification at pH lower than 5 in fluidized-bed reactor. Chemical Engineering Journal, 2017, 310, 282-291.	12.7	42
246	Editorial introduction to the special issue from G16 conference (2015): Research frontiers in chalcogen cycle science & amp; technology. Journal of Hazardous Materials, 2017, 324, 1-2.	12.4	1
247	Adsorption Behaviour of Lactic Acid on Granular Activated Carbon and Anionic Resins: Thermodynamics, Isotherms and Kinetic Studies. Energies, 2017, 10, 665.	3.1	47
248	Longitudinal Removal of Bisphenol-A and Nonylphenols from Pretreated Domestic Wastewater by Tropical Horizontal Sub-SurfaceConstructed Wetlands. Applied Sciences (Switzerland), 2017, 7, 834.	2.5	6
249	Removal of Escherichia coli by Intermittent Operation of Saturated Sand Columns Supplemented with Hydrochar Derived from Sewage Sludge. Applied Sciences (Switzerland), 2017, 7, 839.	2.5	15
250	Industrial Selenium Pollution: Wastewaters and Physical–Chemical Treatment Technologies. , 2017, , 103-130.		4
251	Lead and Zinc Metallurgical Slags Mineralogy and Weathering. Environmental Chemistry for A Sustainable World, 2017, , 133-160.	0.5	1
252	Leaching and Recovery of Molybdenum from Spent Catalysts. Environmental Chemistry for A Sustainable World, 2017, , 207-239.	0.5	2

#	Article	IF	CITATIONS
253	Enhanced Anaerobic Digestion of Food Waste by Supplementing Trace Elements: Role of Selenium (VI) and Iron (II). Frontiers in Environmental Science, 2016, 4, .	3.3	46
254	Iron, Cobalt, and Gadolinium Transport in Methanogenic Granules Measured by 3D Magnetic Resonance Imaging. Frontiers in Environmental Science, 2016, 4, .	3.3	10
255	Mass Loss Controlled Thermal Pretreatment System to Assess the Effects of Pretreatment Temperature on Organic Matter Solubilization and Methane Yield from Food Waste. Frontiers in Environmental Science, 2016, 4, .	3.3	16
256	Selenite Reduction by Anaerobic Microbial Aggregates: Microbial Community Structure, and Proteins Associated to the Produced Selenium Spheres. Frontiers in Microbiology, 2016, 7, 571.	3.5	63
257	Effect of operational parameters on the leaching efficiency and recovery of heavy metals from computer printed circuit boards. Journal of Chemical Technology and Biotechnology, 2016, 91, 2038-2046.	3.2	22
258	Simultaneous removal of rotavirus and adenovirus from artificial ground water using hydrochar derived from swine feces. Journal of Water and Health, 2016, 14, 754-767.	2.6	10
259	Public health risk assessment tool: strategy to improve public policy framework for onsite wastewater treatment systems (OWTS). Journal of Water Sanitation and Hygiene for Development, 2016, 6, 74-88.	1.8	3
260	Characterisation of septage in partially sealed cesspit. Journal of Water Sanitation and Hygiene for Development, 2016, 6, 631-639.	1.8	3
261	Response to the comment on "Copper metallurgical slags - current knowledge and fate: A reviewâ€. Critical Reviews in Environmental Science and Technology, 2016, 46, 438-440.	12.8	2
262	The effect of aeration and recirculation on a sand-based hybrid constructed wetland treating low-strength domestic wastewater. Environmental Technology (United Kingdom), 2016, 37, 1923-1932.	2.2	2
263	Microbial synthesis of chalcogenide semiconductor nanoparticles: a review. Microbial Biotechnology, 2016, 9, 11-21.	4.2	68
264	Selenium: environmental significance, pollution, and biological treatment technologies. Biotechnology Advances, 2016, 34, 886-907.	11.7	338
265	Metal chalcogenide quantum dots: biotechnological synthesis and applications. RSC Advances, 2016, 6, 41477-41495.	3.6	94
266	Comparison of Cu, Zn and Fe bioleaching from Cu-metallurgical slags in the presence of Pseudomonas fluorescens and Acidithiobacillus thiooxidans. Applied Geochemistry, 2016, 68, 39-52.	3.0	54
267	Leaching and selective copper recovery from acidic leachates of Três Marias zinc plant (MG, Brazil) metallurgical purification residues. Journal of Environmental Management, 2016, 177, 26-35.	7.8	15
268	Effect of selenite on the morphology and respiratory activity of Phanerochaete chrysosporium biofilms. Bioresource Technology, 2016, 210, 138-145.	9.6	17
269	Fractionation and leachability of heavy metals from aged and recent Zn metallurgical leach residues from the Três Marias zinc plant (Minas Gerais, Brazil). Environmental Science and Pollution Research, 2016, 23, 7504-7516.	5.3	24
270	Higher Cd adsorption on biogenic elemental selenium nanoparticles. Environmental Chemistry Letters, 2016, 14, 381-386.	16.2	40

#	Article	IF	CITATIONS
271	Model development and experimental validation of capnophilic lactic fermentation and hydrogen synthesis by Thermotoga neapolitana. Water Research, 2016, 99, 225-234.	11.3	31
272	Lacto-fermented mix of faeces and bio-waste supplemented by biochar improves the growth and yield of corn (Zea mays L.). Agriculture, Ecosystems and Environment, 2016, 232, 263-272.	5.3	19
273	Start-up of an anaerobic fluidized bed reactor treating synthetic carbohydrate rich wastewater. Journal of Environmental Management, 2016, 184, 456-464.	7.8	18
274	Innovative Global Solutions for Bioenergy Production. Environmental Engineering Science, 2016, 33, 841-842.	1.6	2
275	Evaluation on chemical stability of lead blast furnace (LBF) and imperial smelting furnace (ISF) slags. Journal of Environmental Management, 2016, 180, 310-323.	7.8	27
276	Sorption of zinc onto elemental selenium nanoparticles immobilized in Phanerochaete chrysosporium pellets. Environmental Science and Pollution Research, 2016, 23, 21619-21630.	5.3	37
277	Production of biohythane from food waste via an integrated system of continuously stirred tank and anaerobic fixed bed reactors. Bioresource Technology, 2016, 220, 312-322.	9.6	102
278	Special Issue on Biofilm Engineering for Heavy-Metal Removal and Recovery. Journal of Environmental Engineering, ASCE, 2016, 142, .	1.4	4
279	Constructed wetroofs: A novel approach for the treatment and reuse of domestic wastewater. Ecological Engineering, 2016, 94, 545-554.	3.6	18
280	Enhanced adsorption of orthophosphate and copper onto hydrochar derived from sewage sludge by KOH activation. RSC Advances, 2016, 6, 101827-101834.	3.6	32
281	Effect of <i>N</i> -methylmorpholine- <i>N</i> -oxide Pretreatment on Biogas Production from Rice Straw, Cocoa Shell, and Hazelnut Skin. Environmental Engineering Science, 2016, 33, 843-850.	1.6	41
282	Impacts of sulfur source and temperature on sulfur-driven denitrification by pure and mixed cultures of Thiobacillus. Process Biochemistry, 2016, 51, 1576-1584.	3.7	123
283	Recent advances in nutrient removal and recovery in biological and bioelectrochemical systems. Bioresource Technology, 2016, 215, 173-185.	9.6	202
284	Recovery of molybdenum, nickel and cobalt by precipitation from the acidic leachate of a mineral sludge. Environmental Technology (United Kingdom), 2016, 37, 2231-2242.	2.2	21
285	Adsorption of Iron(II) from Acid Mine Drainage Contaminated Groundwater Using Coal Fly Ash, Coal Bottom Ash, and Bentonite Clay. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	23
286	Effects of operational parameters on dark fermentative hydrogen production from biodegradable complex waste biomass. Waste Management, 2016, 50, 55-64.	7.4	87
287	Kinetic modeling of fermentative hydrogen production by Thermotoga neapolitana. International Journal of Hydrogen Energy, 2016, 41, 4931-4940.	7.1	41
288	Effect of pH and Calcium on the Adsorptive Removal of Cadmium and Copper by Iron Oxide–Coated Sand and Granular Ferric Hydroxide. Journal of Environmental Engineering, ASCE, 2016, 142, .	1.4	6

#	Article	IF	CITATIONS
289	Effect of heavy metal co-contaminants on selenite bioreduction by anaerobic granular sludge. Bioresource Technology, 2016, 206, 1-8.	9.6	56
290	Solvent Pretreatments of Lignocellulosic Materials to Enhance Biogas Production: A Review. Energy & Fuels, 2016, 30, 1892-1903.	5.1	54
291	Bacterially-mediated weathering of crystalline and amorphous Cu-slags. Applied Geochemistry, 2016, 64, 92-106.	3.0	29
292	Concomitant biohydrogen and poly-β-hydroxybutyrate production from dark fermentation effluents by adapted Rhodobacter sphaeroides and mixed photofermentative cultures. Bioresource Technology, 2016, 217, 157-164.	9.6	48
293	Effect of temperature on selenium removal from wastewater by UASB reactors. Water Research, 2016, 94, 146-154.	11.3	62
294	Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB). Waste Management, 2016, 57, 149-157.	7.4	180
295	Biological and Bioelectrochemical Recovery of Critical and Scarce Metals. Trends in Biotechnology, 2016, 34, 137-155.	9.3	234
296	Effect of pH on the Performance of Sulfate and Thiosulfate-Fed Sulfate Reducing Inverse Fluidized Bed Reactors. Journal of Environmental Engineering, ASCE, 2016, 142, .	1.4	20
297	Acid extraction of molybdenum, nickel and cobalt from mineral sludge generated by rainfall water at a metal recycling plant. Environmental Technology (United Kingdom), 2016, 37, 630-639.	2.2	7
298	Methane and VFA production in anaerobic digestion of rice straw under dry, semi-dry and wet conditions during start-up phase. Environmental Technology (United Kingdom), 2016, 37, 505-512.	2.2	14
299	Application of Zn isotopes in environmental impact assessment of Zn–Pb metallurgical industries: A mini review. Applied Geochemistry, 2016, 64, 128-135.	3.0	54
300	BPA and NP removal from municipal wastewater by tropical horizontal subsurface constructed wetlands. Science of the Total Environment, 2016, 542, 93-101.	8.0	50
301	Reduction of selenite to elemental selenium nanoparticles by activated sludge. Environmental Science and Pollution Research, 2016, 23, 1193-1202.	5.3	37
302	Characterization and pH-dependent leaching behaviour of historical and modern copper slags. Journal of Geochemical Exploration, 2016, 160, 1-15.	3.2	57
303	Preferential adsorption of Cu in a multi-metal mixture onto biogenic elemental selenium nanoparticles. Chemical Engineering Journal, 2016, 284, 917-925.	12.7	62
304	Fungal pelleted reactors in wastewater treatment: Applications and perspectives. Chemical Engineering Journal, 2016, 283, 553-571.	12.7	183
305	Biosorption of Pb(II) Ions from Aqueous Solutions by Waste Biomass from Biotrickling Filters: Kinetics, Isotherms, and Thermodynamics. Journal of Environmental Engineering, ASCE, 2016, 142, .	1.4	67
306	NMR and MALDI-TOF MS based characterization of exopolysaccharides in anaerobic microbial aggregates from full-scale reactors. Scientific Reports, 2015, 5, 14316.	3.3	55

#	Article	IF	CITATIONS
307	Removal of rotavirus and adenovirus from artificial ground water using hydrochar derived from sewage sludge. Journal of Applied Microbiology, 2015, 119, 876-884.	3.1	18
308	<i>Pseudomonas moraviensis</i> subsp. stanleyae, a bacterial endophyte of hyperaccumulator <i>Stanleya pinnata</i> , is capable of efficient selenite reduction to elemental selenium under aerobic conditions. Journal of Applied Microbiology, 2015, 119, 400-410.	3.1	56
309	Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana. International Journal of Molecular Sciences, 2015, 16, 12578-12600.	4.1	61
310	Modified Anaerobic Digestion Model No.1 for dry and semi-dry anaerobic digestion of solid organic waste. Environmental Technology (United Kingdom), 2015, 36, 870-880.	2.2	29
311	Copper, lead and zinc removal from metal-contaminated wastewater by adsorption onto agricultural wastes. Environmental Technology (United Kingdom), 2015, 36, 3071-3083.	2.2	43
312	Evaluation of the performance and space requirement by three different hybrid constructed wetlands in a stack arrangement. Ecological Engineering, 2015, 82, 290-300.	3.6	32
313	Biohydrogen production from food waste by coupling semi-continuous dark-photofermentation and residue post-treatment to anaerobic digestion: A synergy for energy recovery. International Journal of Hydrogen Energy, 2015, 40, 16045-16055.	7.1	74
314	Enhanced mesophilic anaerobic digestion of food waste by thermal pretreatment: Substrate versus digestate heating. Waste Management, 2015, 46, 176-181.	7.4	53
315	Removal of colloidal biogenic selenium from wastewater. Chemosphere, 2015, 125, 130-138.	8.2	73
316	Growth of Anaerobic Methane-Oxidizing Archaea and Sulfate-Reducing Bacteria in a High-Pressure Membrane Capsule Bioreactor. Applied and Environmental Microbiology, 2015, 81, 1286-1296.	3.1	71
317	Anaerobic bioleaching of metals from waste activated sludge. Science of the Total Environment, 2015, 514, 60-67.	8.0	35
318	Effect of ammoniacal nitrogen on one-stage and two-stage anaerobic digestion of food waste. Waste Management, 2015, 38, 388-398.	7.4	113
319	A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Applied Energy, 2015, 144, 73-95.	10.1	747
320	Current Views on Hydrodynamic Models of Nonideal Flow Anaerobic Reactors. Critical Reviews in Environmental Science and Technology, 2015, 45, 2175-2207.	12.8	10
321	Dark fermentation of complex waste biomass for biohydrogen production by pretreated thermophilic anaerobic digestate. Journal of Environmental Management, 2015, 152, 43-48.	7.8	111
322	Ecology and Biotechnology of Selenium-Respiring Bacteria. Microbiology and Molecular Biology Reviews, 2015, 79, 61-80.	6.6	319
323	Cr(VI) and COD removal from landfill leachate by polyculture constructed wetland at a pilot scale. Environmental Science and Pollution Research, 2015, 22, 12804-12815.	5.3	18
324	Effect of hydraulic retention time on metal precipitation in sulfate reducing inverse fluidized bed reactors. Journal of Chemical Technology and Biotechnology, 2015, 90, 120-129.	3.2	15

#	Article	IF	CITATIONS
325	Mineralogy and metals speciation in Mo rich mineral sludges generated at a metal recycling plant. Waste Management, 2015, 38, 303-311.	7.4	25
326	Production, recovery and reuse of biogenic elemental selenium. Environmental Chemistry Letters, 2015, 13, 89-96.	16.2	51
327	Microbial Community Composition and Ultrastructure of Granules from a Full-Scale Anammox Reactor. Microbial Ecology, 2015, 70, 118-131.	2.8	115
328	Automated biological sulphate reduction: a review on mathematical models, monitoring and bioprocess control. FEMS Microbiology Reviews, 2015, 39, 823-853.	8.6	19
329	Chemolithotrophic denitrification in biofilm reactors. Chemical Engineering Journal, 2015, 280, 643-657.	12.7	147
330	Use of the Macrophyte Cyperus papyrus in Wastewater Treatment. , 2015, , 293-314.		6
331	Metals removal and recovery in bioelectrochemical systems: A review. Bioresource Technology, 2015, 195, 102-114.	9.6	318
332	Selenium biomineralization for biotechnological applications. Trends in Biotechnology, 2015, 33, 323-330.	9.3	214
333	Coal Bottom Ash as Sorbing Material for Fe(II), Cu(II), Mn(II), and Zn(II) Removal from Aqueous Solutions. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	35
334	Effect of Fulvic Acid on Adsorptive Removal of Cr(VI) and As(V) from Groundwater by Iron Oxide-Based Adsorbents. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	16
335	Removal of selenite from wastewater in a Phanerochaete chrysosporium pellet based fungal bioreactor. International Biodeterioration and Biodegradation, 2015, 102, 361-369.	3.9	43
336	Copper Metallurgical Slags – Current Knowledge and Fate: A Review. Critical Reviews in Environmental Science and Technology, 2015, 45, 2424-2488.	12.8	89
337	Entrapped elemental selenium nanoparticles affect physicochemical properties of selenium fed activated sludge. Journal of Hazardous Materials, 2015, 295, 193-200.	12.4	50
338	Effect of process variables on the sulfate reduction process in bioreactors treating metal-containing wastewaters: factorial design and response surface analyses. Biodegradation, 2015, 26, 299-311.	3.0	28
339	A new photo-activated sludge system for nitrification by an algal-bacterial consortium in a photo-bioreactor with biomass recycle. Water Science and Technology, 2015, 72, 443-450.	2.5	23
340	Vertical subsurface flow constructed wetlands for polishing secondary Kaduna refinery wastewater in Nigeria. Ecological Engineering, 2015, 84, 588-595.	3.6	33
341	Effect of pH on Cu, Ni and Zn removal by biogenic sulfide precipitation in an inversed fluidized bed bioreactor. Hydrometallurgy, 2015, 158, 94-100.	4.3	51
342	Extracellular Polymeric Substances Govern the Surface Charge of Biogenic Elemental Selenium Nanoparticles. Environmental Science & Technology, 2015, 49, 1713-1720.	10.0	158

#	Article	IF	CITATIONS
343	Grey water characterisation and pollutant loads in an urban slum. International Journal of Environmental Science and Technology, 2015, 12, 423-436.	3.5	54
344	Electrocoagulation of colloidal biogenic selenium. Environmental Science and Pollution Research, 2015, 22, 3127-3137.	5.3	45
345	Bio-alteration of metallurgical wastes by Pseudomonas aeruginosa in a semi flow-through reactor. Journal of Environmental Management, 2015, 147, 297-305.	7.8	19
346	Effects of selenium oxyanions on the white-rot fungus Phanerochaete chrysosporium. Applied Microbiology and Biotechnology, 2015, 99, 2405-2418.	3.6	47
347	Spontaneous electrochemical treatment for sulfur recovery by a sulfide oxidation/vanadium(V) reduction galvanic cell. Journal of Environmental Management, 2015, 149, 263-270.	7.8	3
348	Phytoremediation of Landfill Leachate with <i>Colocasia esculenta, Gynerum sagittatum</i> and <i>Heliconia psittacorum</i> in Constructed Wetlands. International Journal of Phytoremediation, 2015, 17, 16-24.	3.1	80
349	Adsorption of zinc by biogenic elemental selenium nanoparticles. Chemical Engineering Journal, 2015, 260, 855-863.	12.7	119
350	Improved dark fermentative hydrogen yields from complex waste biomass using mixed anaerobic cultures. Proceedings of the Water Environment Federation, 2015, 2015, 1-1.	0.0	1
351	Removal of <i>Escherichia coli</i> from Saturated Sand Columns Supplemented with Hydrochar Produced from Maize. Journal of Environmental Quality, 2014, 43, 2096-2103.	2.0	14
352	Chemical sulphate removal for treatment of construction and demolition debris leachate. Environmental Technology (United Kingdom), 2014, 35, 1989-1996.	2.2	7
353	Biological Sulfate Reduction for Treatment of Gypsum Contaminated Soils, Sediments, and Solid Wastes. Critical Reviews in Environmental Science and Technology, 2014, 44, 1037-1070.	12.8	16
354	Effect of moisture on disintegration kinetics during anaerobic digestion of complex organic substrates. Waste Management and Research, 2014, 32, 40-48.	3.9	22
355	Effect of total solids content on methane and volatile fatty acid production in anaerobic digestion of food waste. Waste Management and Research, 2014, 32, 947-953.	3.9	35
356	Effect of calcium on adsorptive removal of As(III) and As(V) by iron oxide-based adsorbents. Environmental Technology (United Kingdom), 2014, 35, 3153-3164.	2.2	11
357	Hydrodynamic Mathematical Modelling of Aerobic Plug Flow and Nonideal Flow Reactors: A Critical and Historical Review. Critical Reviews in Environmental Science and Technology, 2014, 44, 2642-2673.	12.8	19
358	Quantification of microbial risks to human health caused by waterborne viruses and bacteria in an urban slum. Journal of Applied Microbiology, 2014, 116, 447-463.	3.1	103
359	Sorption of cadmium in columns of sand-supported hydrothermally carbonized particles. Water Science and Technology, 2014, 69, 2504-2509.	2.5	5
360	Special issue from G16 conference: Chalcogen cycle science and technology. Journal of Hazardous Materials, 2014, 269, 1.	12.4	0

#	Article	IF	CITATIONS
361	Sulfide response analysis for sulfide control using aÂpS electrode in sulfate reducing bioreactors. Water Research, 2014, 50, 48-58.	11.3	16
362	Simulation of batch-operated experimental wetland mesocosms inÂAQUASIM biofilm reactor compartment. Journal of Environmental Management, 2014, 134, 100-108.	7.8	11
363	Biological sulfate removal from construction and demolition debris leachate: Effect of bioreactor configuration. Journal of Hazardous Materials, 2014, 269, 38-44.	12.4	29
364	Grey water treatment in urban slums by a filtration system: Optimisation of the filtration medium. Journal of Environmental Management, 2014, 146, 131-141.	7.8	49
365	Enhanced anaerobic digestion of food waste by thermal and ozonation pretreatment methods. Journal of Environmental Management, 2014, 146, 142-149.	7.8	141
366	Effect of aeration on pollutants removal, biofilm activity and protozoan abundance in conventional and hybrid horizontal subsurface-flow constructed wetlands. Environmental Technology (United) Tj ETQq0 0 0 rg	ʒB⊉/Ωverl¢	oc la 710 Tf 50 5
367	Use of marine and engineered materials for the removal of phosphorus from secondary effluent. Ecological Engineering, 2014, 73, 635-642.	3.6	9
368	Distribution and fate of metals in the Montenegrin part of Lake Skadar. International Journal of Sediment Research, 2014, 29, 357-367.	3.5	22
369	Pretreatment methods to enhance anaerobic digestion of organic solid waste. Applied Energy, 2014, 123, 143-156.	10.1	692
370	Morphology, Mineralogy, and Solid–Liquid Phase Separation Characteristics of Cu and Zn Precipitates Produced with Biogenic Sulfide. Environmental Science & Technology, 2014, 48, 664-673.	10.0	26
371	Treatment of gold mining effluent in pilot fixed bed sorption system. Hydrometallurgy, 2014, 141, 1-7.	4.3	12
372	A two-step crushed lava rock filter unit for grey water treatment at household level in an urban slum. Journal of Environmental Management, 2014, 133, 258-267.	7.8	34
373	Bioweathering of lead blast furnace metallurgical slags by Pseudomonas aeruginosa. International Biodeterioration and Biodegradation, 2014, 86, 372-381.	3.9	28
374	Spatial–temporal variability in water quality and macro-invertebrate assemblages in the Upper Mara River basin, Kenya. Physics and Chemistry of the Earth, 2014, 67-69, 93-104.	2.9	42
375	Electrical energy production and operational strategies from a farm-scale anaerobic batch reactor loaded with rice straw and piggeryÂwastewater. Renewable Energy, 2014, 62, 399-406.	8.9	21
376	Use of organic substrates as electron donors for biological sulfate reduction in gypsiferous mine soils from Nakhon Si Thammarat (Thailand). Chemosphere, 2014, 101, 1-7.	8.2	11
377	Performance Evaluation of Horizontal Subsurface Flow–Constructed Wetlands for the Treatment of Domestic Wastewater in the Tropics. Journal of Environmental Engineering, ASCE, 2013, 139, 358-367.	1.4	55
378	Exploring the potential for wastewater reuse in agriculture as a climate change adaptation measure for Can Tho City, Vietnam. Agricultural Water Management, 2013, 128, 43-54.	5.6	47

#	Article	IF	CITATIONS
379	Development of Low Cost Two-Step Reverse Transcription-Quantitative Polymerase Chain Reaction Assays for Rotavirus Detection in Foul Surface Water Drains. Food and Environmental Virology, 2013, 5, 126-133.	3.4	5
380	Cr(III) and Cr(VI) Removal from Aqueous Solutions by Cheaply Available Fruit Waste and Algal Biomass. Applied Biochemistry and Biotechnology, 2013, 170, 498-513.	2.9	40
381	Effect of Organic Ligands on Copper(II) Removal from Metal Plating Wastewater by Orange Peel-based Biosorbents. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	14
382	Metal binding properties of extracellular polymeric substances extracted from anaerobic granular sludges. Environmental Science and Pollution Research, 2013, 20, 4509-4519.	5.3	48
383	Assessment of the effluent quality from a gold mining industry in Ghana. Environmental Science and Pollution Research, 2013, 20, 3799-3811.	5.3	29
384	Arylamine functionalization of carbon anodes for improved microbial electrocatalysis. RSC Advances, 2013, 3, 18759.	3.6	11
385	Removal of Cu(II) by biosorption onto coconut shell in fixed-bed column systems. Journal of Industrial and Engineering Chemistry, 2013, 19, 841-848.	5.8	99
386	Enhanced methane production from rice straw co-digested with anaerobic sludge from pulp and paper mill treatment process. Bioresource Technology, 2013, 148, 135-143.	9.6	49
387	A case study of urban water balancing in the partly sewered city of Nablus-East (Palestine) to study wastewater pollution loads and groundwater pollution. Urban Water Journal, 2013, 10, 434-446.	2.1	6
388	Reactive transport simulation in a tropical horizontal subsurface flow constructed wetland treating domestic wastewater. Science of the Total Environment, 2013, 449, 309-319.	8.0	18
389	Performance comparison and economics analysis of waste stabilization ponds and horizontal subsurface flow constructed wetlands treating domestic wastewater: A case study of the Juja sewage treatment works. Journal of Environmental Management, 2013, 128, 220-225.	7.8	76
390	Biological sulfate removal from gypsum contaminated construction and demolition debris. Journal of Environmental Management, 2013, 131, 82-91.	7.8	28
391	Application of Quantitative Microbial Risk Assessment to analyze the public health risk from poor drinking water quality in a low income area in Accra, Ghana. Science of the Total Environment, 2013, 449, 134-142.	8.0	117
392	Catalytic response of microbial biofilms grown under fixed anode potentials depends on electrochemical cell configuration. Chemical Engineering Journal, 2013, 230, 532-536.	12.7	36
393	First international comparative study of volatile fatty acids in aqueous samples by chromatographic techniques: Evaluating sources of error. TrAC - Trends in Analytical Chemistry, 2013, 51, 127-143.	11.4	34
394	Climate Change Adaptation Indicators to Assess Wastewater Management and Reuse Options in the Mekong Delta, Vietnam. Water Resources Management, 2013, 27, 1175-1191.	3.9	16
395	Fluorescence detection to determine proteins and humic-like substances fingerprints of exopolymeric substances (EPS) from biological sludges performed by size exclusion chromatography (SEC). Bioresource Technology, 2013, 131, 159-165.	9.6	62
396	Photo-oxygenation to support nitrification in an algal–bacterial consortium treating artificial wastewater. Bioresource Technology, 2013, 134, 244-250.	9.6	141

#	Article	IF	CITATIONS
397	Development and start up of a gas-lift anaerobic membrane bioreactor (Gl-AnMBR) for conversion of sewage to energy, water and nutrients. Journal of Membrane Science, 2013, 441, 158-167.	8.2	54
398	The Anaerobic Digestion of Rice Straw: A Review. Critical Reviews in Environmental Science and Technology, 2013, 43, 895-915.	12.8	132
399	Acid Mine Drainage Treatment in Fluidized-Bed Bioreactors by Sulfate-Reducing Bacteria: A Critical Review. Critical Reviews in Environmental Science and Technology, 2013, 43, 2545-2580.	12.8	89
400	Material selection for a constructed wetroof receiving pre-treated high strength domestic wastewater. Water Science and Technology, 2013, 68, 2264-2270.	2.5	7
401	Genomic copy concentrations of selected waterborne viruses in a slum environment in Kampala, Uganda. Journal of Water and Health, 2013, 11, 358-370.	2.6	31
402	Cyclic Sorption and Desorption of Cu(II) onto Coconut Shell and Iron Oxide Coated Sand. Separation Science and Technology, 2013, 48, 2786-2794.	2.5	9
403	Arsenic(III) Removal at Low Concentrations by Biosorption using <i>Phanerochaete chrysosporium </i> Pellets. Separation Science and Technology, 2013, 48, 1111-1122.	2.5	12
404	The impact of metal transport processes on bioavailability of free and complex metal ions in methanogenic granular sludge. Water Science and Technology, 2012, 65, 1875-1881.	2.5	12
405	Does bioelectrochemical cell configuration and anode potential affect biofilm response?. Biochemical Society Transactions, 2012, 40, 1308-1314.	3.4	27
406	Enrichment of ANME-1 from Eckernförde Bay sediment on thiosulfate, methane and short-chain fatty acids. Journal of Biotechnology, 2012, 157, 482-489.	3.8	18
407	Cd(II) and Pb(II) sorption by extracellular polymeric substances (EPS) extracted from anaerobic granular biofilms: Evidence of a pH sorption-edge. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43, 444-449.	5.3	59
408	Design considerations for a farm-scale biogas plant based on pilot-scale anaerobic digesters loaded with rice straw and piggery wastewater. Biomass and Bioenergy, 2012, 46, 469-478.	5.7	50
409	Heavy metal removal by combining anaerobic upflow packed bed reactors with water hyacinth ponds. Environmental Technology (United Kingdom), 2012, 33, 1455-1464.	2.2	18
410	Kinetics modelling of Cu(II) biosorption on to coconut shell and <i>Moringa oleifera</i> seeds from tropical regions. Environmental Technology (United Kingdom), 2012, 33, 409-417.	2.2	31
411	Removal of gaseous trichloroethylene (TCE) in a composite membrane biofilm reactor. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2012, 47, 1046-1052.	1.7	6
412	Simulation of carbon, nitrogen and sulphur conversion in batch-operated experimental wetland mesocosms. Ecological Engineering, 2012, 42, 304-315.	3.6	42
413	Heavy metal removal in duckweed and algae ponds as a polishing step for textile wastewater treatment. Ecological Engineering, 2012, 44, 102-110.	3.6	141
414	Microbial community structure and dynamics in anaerobic fluidizedâ€bed and granular sludgeâ€bed reactors: influence of operational temperature and reactor configuration. Microbial Biotechnology, 2012, 5, 738-752.	4.2	41

#	Article	IF	CITATIONS
415	Leaching and accumulation of trace elements in sulfate reducing granular sludge under concomitant thermophilic and low pH conditions. Bioresource Technology, 2012, 126, 238-246.	9.6	21
416	Sustainable sanitation technology options for urban slums. Biotechnology Advances, 2012, 30, 964-978.	11.7	150
417	Dynamic mathematical modeling of sulfate reducing gas-lift reactors. Process Biochemistry, 2012, 47, 2172-2181.	3.7	19
418	Organic substrates as electron donors in permeable reactive barriers for removal of heavy metals from acid mine drainage. Environmental Technology (United Kingdom), 2012, 33, 2635-2644.	2.2	33
419	Oxygen transport within the biofilm matrix of a membrane biofilm reactor treating gaseous toluene. Journal of Chemical Technology and Biotechnology, 2012, 87, 751-757.	3.2	16
420	Influence of sulfide concentration and macronutrients on the characteristics of metal precipitates relevant to metal recovery in bioreactors. Bioresource Technology, 2012, 110, 26-34.	9.6	39
421	Release and conversion of ammonia in bioreactor landfill simulators. Journal of Environmental Management, 2012, 95, S144-S148.	7.8	10
422	Hexavalent chromium reduction in a sulfur reducing packed-bed bioreactor. Journal of Hazardous Materials, 2012, 219-220, 253-259.	12.4	47
423	Use of Gisenyi Volcanic Rock for Adsorptive Removal of Cd(II), Cu(II), Pb(II), and Zn(II) from Wastewater. Water, Air, and Soil Pollution, 2012, 223, 533-547.	2.4	30
424	Near-shore distribution of heavy metals in the Albanian part of Lake Ohrid. Environmental Monitoring and Assessment, 2012, 184, 1823-1839.	2.7	15
425	Sulfate Reduction for Inorganic Waste and Process Water Treatment. , 2011, , 435-446.		10
426	Reactions between Methanethiol and Biologically Produced Sulfur Particles. Environmental Science & Technology, 2011, 45, 1320-1326.	10.0	35
427	Combined Speciation Analysis by X-ray Absorption Near-Edge Structure Spectroscopy, Ion Chromatography, and Solid-Phase Microextraction Gas Chromatographyâ''Mass Spectrometry To Evaluate Biotreatment of Concentrated Selenium Wastewaters. Environmental Science & Amp; Technology, 2011, 45, 1067-1073.	10.0	27
428	Anaerobic Treatment of Organic Sulfate-Rich Wastewaters. , 2011, , 399-418.		1
429	Biotechnological Aspects of the Use of Methane as Electron Donor for Sulfate Reduction. , 2011, , 419-434.		6
430	Adapting to socioeconomic, operational and environmental challenges of dairy farm effluent purification in Uruguay through the use of surface flow constructed wetlands. Water Practice and Technology, 2011, 6, .	2.0	1
431	Transcription of <i>fdh</i> and <i>hyd</i> in <i>Syntrophobacter</i> spp. and <i>Methanospirillum</i> spp. as a diagnostic tool for monitoring anaerobic sludge deprived of molybdenum, tungsten and selenium. Environmental Microbiology, 2011, 13, 1228-1235.	3.8	24
432	Addition of an aerated ironâ€rich wasteâ€activated sludge to control the soluble sulphide concentration in sewage. Water and Environment Journal, 2011, 25, 106-115.	2.2	8

#	Article	IF	CITATIONS
433	3D model for a secondary facultative pond. Ecological Modelling, 2011, 222, 1592-1603.	2.5	53
434	10th anniversary of RESB. Reviews in Environmental Science and Biotechnology, 2011, 10, 1-2.	8.1	2
435	Fate of Heavy Metals in an Urban Natural Wetland: The Nyabugogo Swamp (Rwanda). Water, Air, and Soil Pollution, 2011, 214, 321-333.	2.4	44
436	Growth kinetics of hydrogen sulfide oxidizing bacteria in corroded concrete from sewers. Journal of Hazardous Materials, 2011, 189, 685-691.	12.4	40
437	Biosorption of Cu(II) onto agricultural materials from tropical regions. Journal of Chemical Technology and Biotechnology, 2011, 86, 1184-1194.	3.2	27
438	The effect of electrodialytic treatment and Na2H2EDTA addition on methanogenic activity of copper-amended anaerobic granular sludge: Treatment costs and energy consumption. Bioresource Technology, 2011, 102, 5541-5544.	9.6	2
439	Chalcogen cycle science and technology. Journal of Hazardous Materials, 2011, 189, 623.	12.4	0
440	Effect of sulfide concentration on the location of the metal precipitates in inversed fluidized bed reactors. Journal of Hazardous Materials, 2011, 192, 200-7.	12.4	56
441	Biofilms for environmental biotechnology in support of sustainable development: A report. Virulence, 2011, 2, 490-489.	4.4	5
442	Prevention of biofilm formation in water and wastewater installations by application of TiO ₂ nano particles coating. Desalination and Water Treatment, 2011, 28, 83-87.	1.0	4
443	Extraction of extracellular polymeric substances (EPS) from anaerobic granular sludges: comparison of chemical and physical extraction protocols. Applied Microbiology and Biotechnology, 2010, 85, 1589-1599.	3.6	248
444	Effect of methanogenic substrates on anaerobic oxidation of methane and sulfate reduction by an anaerobic methanotrophic enrichment. Applied Microbiology and Biotechnology, 2010, 87, 1499-1506.	3.6	53
445	Effects of extraction procedures on metal binding properties of extracellular polymeric substances (EPS) from anaerobic granular sludges. Colloids and Surfaces B: Biointerfaces, 2010, 80, 161-168.	5.0	59
446	The effect of sub-optimal temperature on specific sulfidogenic activity of mesophilic SRB in an H2-fed membrane bioreactor. Process Biochemistry, 2010, 45, 363-368.	3.7	12
447	Zn–Ni sulfide selective precipitation: The role of supersaturation. Separation and Purification Technology, 2010, 74, 108-118.	7.9	45
448	Effect of sorption kinetics on nickel toxicity in methanogenic granular sludge. Journal of Hazardous Materials, 2010, 180, 289-296.	12.4	8
449	Removal of estrone, 17α-ethinylestradiol, and 17ß-estradiol in algae and duckweed-based wastewater treatment systems. Environmental Science and Pollution Research, 2010, 17, 824-833.	5.3	142
450	Biotechnological aspects of sulfate reduction with methane as electron donor. Reviews in Environmental Science and Biotechnology, 2010, 9, 59-78.	8.1	36

#	Article	IF	CITATIONS
451	Selection of sustainable sanitation technologies for urban slums — A case of Bwaise III in Kampala, Uganda. Science of the Total Environment, 2010, 409, 52-62.	8.0	88
452	Sulfate reduction at pH 4.0 for treatment of process and wastewaters. Biotechnology Progress, 2010, 26, 1029-1037.	2.6	31
453	Air pollution control. Journal of Chemical Technology and Biotechnology, 2010, 85, 307-308.	3.2	1
454	Removal of heavy metals and cyanide from gold mine wastewater. Journal of Chemical Technology and Biotechnology, 2010, 85, 590-613.	3.2	179
455	Sulfate reduction during the acidification of sucrose at pH 5 under thermophilic (55 °C) conditions. I: Effect of trace metals. Bioresource Technology, 2010, 101, 4269-4277.	9.6	12
456	Sulfate reduction during the acidification of sucrose at pH 5 under thermophilic (55 ŰC) conditions. II: Effect of sulfide and COD/ <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si1.gif" overflow="scroll"><mml:mrow><mml:msubsup><mml:mrow><mml:mtext>SO</mml:mtext></mml:mrow><mm mtime Disease and the second secon</mm </mml:msubsup></mml:mrow></mml:math>	9.6 l:mrow> <r< td=""><td>40 nml:mn>4</td></r<>	40 nml:mn>4
457	ratio. Bioresource Technology, 2010, 101, 4278-4284. Effect of vitamin B12 pulse addition on the performance of cobalt deprived anaerobic granular sludge bioreactors. Bioresource Technology, 2010, 101, 5201-5205.	9.6	11
458	Dosing of anaerobic granular sludge bioreactors with cobalt: Impact of cobalt retention on methanogenic activity. Bioresource Technology, 2010, 101, 9429-9437.	9.6	22
459	Trace methane oxidation and the methane dependency of sulfate reduction in anaerobic granular sludge. FEMS Microbiology Ecology, 2010, 72, 261-271.	2.7	31
460	Quantitative Microbial Risk Analysis to evaluate health effects of interventions in the urban water system of Accra, Ghana. Journal of Water and Health, 2010, 8, 417-430.	2.6	62
461	Effect of substrate feeding on viscosity evolution of anaerobic granular sludges. Water Science and Technology, 2010, 62, 132-139.	2.5	1
462	Gas-lift Anaerobic Membrane Bioreactor (Gl-AnMBR): Preliminary Results From a Filterability Assessment. Proceedings of the Water Environment Federation, 2010, 2010, 191-207.	0.0	0
463	Characterization of the Mineral Fraction Associated to Extracellular Polymeric Substances (EPS) in Anaerobic Granular Sludges. Environmental Science & Technology, 2010, 44, 412-418.	10.0	83
464	Divalent metal addition restores sulfide-inhibited N2O reduction in Pseudomonas aeruginosa. Nitric Oxide - Biology and Chemistry, 2010, 23, 101-105.	2.7	15
465	Duckweed and Algae Ponds as a Post-Treatment for Metal Removal from Textile Wastewater. , 2010, , 63-75.		1
466	Chalcogen Cycle Science and Technology. Environmental Technology (United Kingdom), 2009, 30, 1227-1227.	2.2	0
467	Monitoring ZnS Precipitation: Estimation, Error Analysis and Experiment Design. Separation Science and Technology, 2009, 44, 1675-1703.	2.5	1
468	Sulfur K-edge XANES spectroscopy as a tool for understanding sulfur chemical state in anaerobic granular sludge. Journal of Physics: Conference Series, 2009, 190, 012184.	0.4	10

#	Article	IF	CITATIONS
469	Endogenous and bioaugmented sulphate reduction in calcareous gypsiferous soils. Environmental Technology (United Kingdom), 2009, 30, 1305-1312.	2.2	6
470	The essential toxin: The changing perception of selenium in environmental sciences. Science of the Total Environment, 2009, 407, 3620-3633.	8.0	343
471	Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification. Science of the Total Environment, 2009, 407, 1333-1343.	8.0	130
472	Metal supplementation to UASB bioreactors: from cell-metal interactions to full-scale application. Science of the Total Environment, 2009, 407, 3652-3667.	8.0	121
473	Low-frequency ultrasound in biotechnology: state of the art. Trends in Biotechnology, 2009, 27, 298-306.	9.3	287
474	Removal of H ₂ S and volatile organic sulfur compounds by silicone membrane extraction. Journal of Chemical Technology and Biotechnology, 2009, 84, 69-77.	3.2	13
475	Enrichment of anaerobic methanotrophs in sulfateâ€reducing membrane bioreactors. Biotechnology and Bioengineering, 2009, 104, 458-470.	3.3	88
476	Effect of the sulfide concentration on zinc bio-precipitation in a single stage sulfidogenic bioreactor at pH 5.5. Separation and Purification Technology, 2009, 69, 243-248.	7.9	22
477	Biotechniques for air pollution control (biotechniques 2009). Reviews in Environmental Science and Biotechnology, 2009, 8, 321-323.	8.1	0
478	Population Dynamics of a Single-Stage Sulfidogenic Bioreactor Treating Synthetic Zinc-Containing Waste Streams. Microbial Ecology, 2009, 58, 529-537.	2.8	12
479	Bioaugmentation of UASB reactors with immobilized Sulfurospirillum barnesii for simultaneous selenate and nitrate removal. Applied Microbiology and Biotechnology, 2009, 83, 377-388.	3.6	59
480	Microbial diversity and community structure of a highly active anaerobic methaneâ€oxidizing sulfateâ€reducing enrichment. Environmental Microbiology, 2009, 11, 3223-3232.	3.8	39
481	Evaluation of size exclusion chromatography (SEC) for the characterization of extracellular polymeric substances (EPS) in anaerobic granular sludges. Bioresource Technology, 2009, 100, 6258-6268.	9.6	55
482	Decreased activity of a propionate degrading community in a UASB reactor fed with synthetic medium without molybdenum, tungsten and selenium. Enzyme and Microbial Technology, 2009, 45, 139-145.	3.2	60
483	Selective precipitation of Cu from Zn in a pS controlled continuously stirred tank reactor. Journal of Hazardous Materials, 2009, 165, 256-265.	12.4	81
484	Magnetic resonance microscopy of iron transport in methanogenic granules. Journal of Magnetic Resonance, 2009, 200, 303-312.	2.1	13
485	Effects of physico-chemical factors on the viscosity evolution of anaerobic granular sludge. Biochemical Engineering Journal, 2009, 43, 231-238.	3.6	42
486	User-Friendly Mathematical Model for the Design of Sulfate Reducing H2â^•CO2 Fed Bioreactors. Journal of Environmental Engineering, ASCE, 2009, 135, 167-175.	1.4	11

#	Article	IF	CITATIONS
487	Acceleration of the Fe(III)EDTAâ^ reduction rate in BioDeNOx reactors by dosing electron mediating compounds. Chemosphere, 2009, 75, 243-249.	8.2	34
488	Selective recovery of nickel over iron from a nickel–iron solution using microbial sulfate reduction in a gas-lift bioreactor. Water Research, 2009, 43, 853-861.	11,3	49
489	Effect of Environmental Conditions on Sulfate Reduction with Methane as Electron Donor by an Eckernförde Bay Enrichment. Environmental Science & Technology, 2009, 43, 6553-6559.	10.0	54
490	Hydrogen sulphide removal from corroding concrete: Comparison between surface removal rates and biomass activity. Environmental Technology (United Kingdom), 2009, 30, 1291-1296.	2.2	10
491	Sulfate Reduction at pH 5 in a High-Rate Membrane Bioreactor: Reactor Performance and Microbial Community Analyses. Journal of Microbiology and Biotechnology, 2009, , .	2.1	13
492	Sulfate reduction at pH 5 in a high-rate membrane bioreactor: reactor performance and microbial community analyses. Journal of Microbiology and Biotechnology, 2009, 19, 698-708.	2.1	16
493	Supplementation of cobalt to UASB reactors by pulse dosing: CoCl2 versus CoEDTA2â^' pulses. Biochemical Engineering Journal, 2008, 42, 111-119.	3.6	26
494	Modelling and on-line estimation of zinc sulphide precipitation in a continuously stirred tank reactor. Separation and Purification Technology, 2008, 63, 654-660.	7.9	13
495	Role of nickel in high rate methanol degradation in anaerobic granular sludge bioreactors. Biodegradation, 2008, 19, 725-737.	3.0	37
496	Zinc deprivation of methanol fed anaerobic granular sludge bioreactors. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 543-557.	3.0	18
497	Cobalt toxicity in anaerobic granular sludge: influence of chemical speciation. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 1465-1474.	3.0	44
498	Acidification of methanol-fed anaerobic granular sludge bioreactors by cobalt deprivation: Induction and microbial community dynamics. Biotechnology and Bioengineering, 2008, 99, 49-58.	3.3	36
499	Nitric oxide reduction in BioDeNOx reactors: Kinetics and mechanism. Biotechnology and Bioengineering, 2008, 100, 1099-1107.	3.3	28
500	Anaerobic methanethiol degradation and methanogenic community analysis in an alkaline (pH 10) biological process for liquefied petroleum gas desulfurization. Biotechnology and Bioengineering, 2008, 101, 691-701.	3.3	27
501	Sulfate reduction at pH 4 during the thermophilic (55°C) acidification of sucrose in UASB reactors. Biotechnology Progress, 2008, 24, 1278-1289.	2.6	3
502	Influence of low pH (6, 5 and 4) on nutrient dynamics and characteristics of acidifying sulfate reducing granular sludge. Process Biochemistry, 2008, 43, 1227-1238.	3.7	19
503	Methanethiol degradation in anaerobic bioreactors at elevated pH (⩾8): Reactor performance and microbial community analysis. Bioresource Technology, 2008, 99, 8967-8973.	9.6	24
504	Comparison of CSTR and UASB reactor configuration for the treatment of sulfate rich wastewaters under acidifying conditions. Enzyme and Microbial Technology, 2008, 43, 471-479.	3.2	24

#	Article	IF	CITATIONS
505	Biological Reduction of Nitric Oxide in Aqueous Fe(II)EDTA Solutions. Biotechnology Progress, 2008, 19, 1323-1328.	2.6	79
506	Effect of Sulfur Source on the Performance and Metal Retention of Methanol-Fed UASB Reactors. Biotechnology Progress, 2008, 21, 839-850.	2.6	14
507	Hydrogenogenic CO Conversion in a Moderately Thermophilic (55 °C) Sulfate-Fed Gas Lift Reactor: Competition for CO-Derived H2. Biotechnology Progress, 2008, 22, 1327-1334.	2.6	14
508	Selenate removal in methanogenic and sulfate-reducing upflow anaerobic sludge bed reactors. Water Research, 2008, 42, 2184-2194.	11.3	133
509	High rate sulfate reduction at pH 6 in a pH-auxostat submerged membrane bioreactor fed with formate. Water Research, 2008, 42, 2439-2448.	11.3	29
510	Selenium oxyanion inhibition of hydrogenotrophic and acetoclastic methanogenesis. Chemosphere, 2008, 73, 383-388.	8.2	37
511	Selenium Speciation Assessed by X-Ray Absorption Spectroscopy of Sequentially Extracted Anaerobic Biofilms. Environmental Science & Technology, 2008, 42, 7587-7593.	10.0	41
512	On-line estimation of the dissolved zinc concentration during ZnS precipitation in a continuous stirred tank reactor (CSTR). Water Science and Technology, 2008, 57, 1627-1633.	2.5	0
513	Biological Alkylation and Colloid Formation of Selenium in Methanogenic UASB Reactors. Journal of Environmental Quality, 2008, 37, 1691-1700.	2.0	42
514	Bioprocess Engineering of Sulfate Reduction for Environmental Technology. , 2008, , 285-295.		4
515	Effect of Sulfide Removal on Sulfate Reduction at pH 5 in a Hydrogen Fed Gas-Lift Bioreactor. Journal of Microbiology and Biotechnology, 2008, 18, 1809-1818.	2.1	37
516	Mathematical Model for Sizing Combined Nitrification and Pre-denitrification Activated Sludge Systems. Environmental Technology (United Kingdom), 2007, 28, 391-399.	2.2	5
517	Sulfate Reduction under Acidic Conditions in High Rate Bioreactor Systems for Treatment of Mining and Metallurgical Waste and Process Water. Advanced Materials Research, 2007, 20-21, 324-325.	0.3	2
518	Effect of hydraulic retention time on sulfate reduction in a carbon monoxide fed thermophilic gas lift reactor. Water Research, 2007, 41, 1995-2003.	11.3	27
519	Effect of COD/SO42â^ ratio and sulfide on thermophilic (55°C) sulfate reduction during the acidification of sucrose at pH 6. Water Research, 2007, 41, 2379-2392.	11.3	41
520	Selenium Speciation in Biofilms from Granular Sludge Bed Reactors Used for Wastewater Treatment. AIP Conference Proceedings, 2007, , .	0.4	9
521	Developments and constraints in fermentative hydrogen production. Biofuels, Bioproducts and Biorefining, 2007, 1, 201-214.	3.7	90

 $_{522}$ Anaerobic methanethiol degradation in upflow anaerobic sludge bed reactors at high salinity (\hat{a} % ± 0.5 M) Tj ETQq0.0 rgBT Overlock 1

#	Article	IF	CITATIONS
523	Combined removal of sulfur compounds and nitrate by autotrophic denitrification in bioaugmented activated sludge system. Biotechnology and Bioengineering, 2007, 98, 551-560.	3.3	99
524	Effect of sulfate and iron on physico-chemical characteristics of anaerobic granular sludge. Biochemical Engineering Journal, 2007, 33, 168-177.	3.6	16
525	Effect of Na+ and Ca2+ on the aggregation properties of sieved anaerobic granular sludge. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 306, 142-149.	4.7	62
526	Identification of rheological parameters describing the physico-chemical properties of anaerobic sulphidogenic sludge suspensions. Enzyme and Microbial Technology, 2007, 40, 547-554.	3.2	18
527	Low pH (6, 5 and 4) sulfate reduction during the acidification of sucrose under thermophilic (55°C) conditions. Process Biochemistry, 2007, 42, 580-591.	3.7	34
528	Bonding Form Analysis of Metals and Sulfur Fractionation in Methanolâ€Grown Anaerobic Granular Sludge. Engineering in Life Sciences, 2007, 7, 480-489.	3.6	35
529	H2 enrichment from synthesis gas by Desulfotomaculumcarboxydivorans for potential applications in synthesis gas purification and biodesulfurization. Applied Microbiology and Biotechnology, 2007, 76, 339-347.	3.6	8
530	Simultaneous biological removal of sulphide and nitrate by autotrophic denitrification in an activated sludge system. Water Science and Technology, 2006, 53, 91-99.	2.5	32
531	Dynamic Modelling and Process Control of ZnS Precipitation. Separation Science and Technology, 2006, 41, 1025-1042.	2.5	12
532	Selenium speciation in anaerobic granular sludge. International Journal of Environmental Analytical Chemistry, 2006, 86, 615-627.	3.3	32
533	Cobalt sorption onto anaerobic granular sludge: Isotherm and spatial localization analysis. Journal of Biotechnology, 2006, 121, 227-240.	3.8	32
534	Microbial Fuel Cells for Sulfide Removalâ€. Environmental Science & Technology, 2006, 40, 5218-5224.	10.0	366
535	Microbial CO Conversions with Applications in Synthesis Gas Purification and Bio-Desulfurization. Critical Reviews in Biotechnology, 2006, 26, 41-65.	9.0	97
536	Effect of sulfur compounds on biological reduction of nitric oxide in aqueous Fe(II)EDTA2â^' solutions. Nitric Oxide - Biology and Chemistry, 2006, 15, 40-49.	2.7	44
537	Effect of copper dosing on sulfide inhibited reduction of nitric and nitrous oxide. Nitric Oxide - Biology and Chemistry, 2006, 15, 400-407.	2.7	25
538	Bioconversion of Selenate in Methanogenic Anaerobic Granular Sludge. Journal of Environmental Quality, 2006, 35, 1873-1883.	2.0	49
539	Granular sludge in full-scale anaerobic bioreactors: Trace element content and deficiencies. Enzyme and Microbial Technology, 2006, 39, 337-346.	3.2	58
540	Viscosity evolution of anaerobic granular sludge. Biochemical Engineering Journal, 2006, 27, 315-322.	3.6	66

#	Article	IF	CITATIONS
541	Use of biogenic sulfide for ZnS precipitation. Separation and Purification Technology, 2006, 51, 31-39.	7.9	59
542	VOLATILE ORGANIC SULFUR COMPOUNDS IN ANAEROBIC SLUDGE AND SEDIMENTS: BIODEGRADATION AND TOXICITY. Environmental Toxicology and Chemistry, 2006, 25, 3101.	4.3	45
543	Trace Metals in Anaerobic Granular Sludge Reactors: Bioavailability and Dosing Strategies. Engineering in Life Sciences, 2006, 6, 293-301.	3.6	146
544	Electrokinetic Copper and Iron Migration in Anaerobic Granular Sludge. Water, Air, and Soil Pollution, 2006, 177, 147-168.	2.4	6
545	Dispersed plug flow model for upflow anaerobic sludge bed reactors with focus on granular sludge dynamics. Journal of Industrial Microbiology and Biotechnology, 2006, 33, 221-237.	3.0	35
546	NO removal in continuous BioDeNOx reactors: Fe(II)EDTA2â^' regeneration, biomass growth, and EDTA degradation. Biotechnology and Bioengineering, 2006, 94, 575-584.	3.3	41
547	Induction of cobalt limitation in methanol-fed UASB reactors. Journal of Chemical Technology and Biotechnology, 2006, 81, 1486-1495.	3.2	22
548	Degradation of Methanethiol by Methylotrophic Methanogenic Archaea in a Lab-Scale Upflow Anaerobic Sludge Blanket Reactor. Applied and Environmental Microbiology, 2006, 72, 7540-7547.	3.1	63
549	NOx removal from flue gas by an integrated physicochemical absorption and biological denitrification process. Biotechnology and Bioengineering, 2005, 90, 433-441.	3.3	50
550	High rate sulfate reduction in a submerged anaerobic membrane bioreactor (SAMBaR) at high salinity. Journal of Membrane Science, 2005, 253, 217-232.	8.2	110
551	Influence of pH shocks on trace metal dynamics and performance of methanol fed granular sludge bioreactors. Biodegradation, 2005, 16, 549-567.	3.0	22
552	Developments in Bioremediation of Soils and Sediments Polluted with Metals and Radionuclides – 1. Microbial Processes and Mechanisms Affecting Bioremediation of Metal Contamination and Influencing Metal Toxicity and Transport. Reviews in Environmental Science and Biotechnology, 2005, 4, 115-156.	8.1	183
553	Developments in Bioremediation of Soils and Sediments Polluted with Metals and Radionuclides. 3. Influence of Chemical Speciation and Bioavailability on Contaminants Immobilization/Mobilization Bio-processes. Reviews in Environmental Science and Biotechnology, 2005, 4, 185-212.	8.1	53
554	Desulfotomaculum carboxydivorans sp. nov., a novel sulfate-reducing bacterium capable of growth at 100 % CO. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 2159-2165.	1.7	103
555	Effects of aerobic–anaerobic transient conditions on sulfur and metal cycles in sewer biofilms. Biofilms, 2005, 2, 81-91.	0.6	13
556	Cultivation of high-rate sulfate reducing sludge by pH-based electron donor dosage. Journal of Biotechnology, 2005, 118, 107-116.	3.8	21
557	Enzymatic versus Nonenzymatic Conversions during the Reduction of EDTA-Chelated Fe(III) in BioDeNOxReactors. Environmental Science & Technology, 2005, 39, 2616-2623.	10.0	52
558	Sorption of cobalt and nickel on anaerobic granular sludges: isotherms and sequential extraction. Chemosphere, 2005, 58, 493-505.	8.2	89

#	Article	IF	CITATIONS
559	Copper and trace element fractionation in electrokinetically treated methanogenic anaerobic granular sludge. Environmental Pollution, 2005, 138, 517-528.	7.5	39
560	Sulfide–iron interactions in domestic wastewater from a gravity sewer. Water Research, 2005, 39, 2747-2755.	11.3	143
561	Comparison of three sequential extraction procedures to describe metal fractionation in anaerobic granular sludges. Talanta, 2005, 65, 549-558.	5.5	117
562	Effect of Cobalt Sorption on Metal Fractionation in Anaerobic Granular Sludge. Journal of Environmental Quality, 2004, 33, 1256.	2.0	46
563	Thermophilic (55-65 °C) and Extreme Thermophilic (70-80 °C) Sulfate Reduction in Methanol and Formate-Fed UASB Reactors. Biotechnology Progress, 2004, 20, 1382-1392.	2.6	26
564	Effect of carbon monoxide, hydrogen and sulfate on thermophilic (55�C) hydrogenogenic carbon monoxide conversion in two anaerobic bioreactor sludges. Applied Microbiology and Biotechnology, 2004, 64, 421-428.	3.6	48
565	High-rate sulfate reduction at high salinity (up to 90 mS.cm?1) in mesophilic UASB reactors. Biotechnology and Bioengineering, 2004, 86, 226-235.	3.3	35
566	Stimulation of methanol degradation in UASB reactors: In situ versus pre-loading cobalt on anaerobic granular sludge. Biotechnology and Bioengineering, 2004, 87, 897-904.	3.3	29
567	Denitrification in aqueous FeEDTA solutions. Journal of Chemical Technology and Biotechnology, 2004, 79, 835-841.	3.2	45
568	Nickel and cobalt sorption on anaerobic granular sludges: kinetic and equilibrium studies. Journal of Chemical Technology and Biotechnology, 2004, 79, 1219-1227.	3.2	50
569	Anaerobic sludge granulation. Water Research, 2004, 38, 1376-1389.	11.3	531
570	Thermophilic (55 ŰC) conversion of methanol in methanogenic-UASB reactors: influence of sulphate on methanol degradation and competition. Journal of Biotechnology, 2004, 111, 79-88.	3.8	23
571	Extension of Anaerobic Digestion Model No. 1 with Processes of Sulfate Reduction. Applied Biochemistry and Biotechnology, 2003, 109, 33-46.	2.9	92
572	Use of sulfate reducing cell suspension bioreactors for the treatment of SO2 rich flue gases. Biodegradation, 2003, 14, 229-240.	3.0	25
573	Metal immobilisation by biofilms: Mechanisms and analytical tools. Reviews in Environmental Science and Biotechnology, 2003, 2, 9-33.	8.1	205
574	Long-term adaptation of methanol-fed thermophilic (55��C) sulfate-reducing reactors to NaCl. Journal of Industrial Microbiology and Biotechnology, 2003, 30, 375-382.	3.0	18
575	Effect of sulfate on methanol degradation in thermophilic (55°C) methanogenic UASB reactors. Enzyme and Microbial Technology, 2003, 32, 676-687.	3.2	42
576	Methanol degradation in granular sludge reactors at sub-optimal metal concentrations: role of iron, nickel and cobalt. Enzyme and Microbial Technology, 2003, 33, 190-198.	3.2	47

#	Article	lF	CITATIONS
577	Effect of the sludge retention time on H2 utilization in a sulphate reducing gas-lift reactor. Process Biochemistry, 2003, 39, 491-498.	3.7	32
578	Carbon monoxide conversion by anaerobic bioreactor sludges. FEMS Microbiology Ecology, 2003, 44, 271-277.	2.7	75
579	Effect of specific gas loading rate on thermophilic (55°C) acidifying (pH 6) and sulfate reducing granular sludge reactors. Water Research, 2003, 37, 1033-1047.	11.3	47
580	Effect of NaCl on thermophilic (55°C) methanol degradation in sulfate reducing granular sludge reactors. Water Research, 2003, 37, 2269-2280.	11.3	80
581	Effects of trace element addition on volatile fatty acid conversions in anaerobic granular sludge reactors. Environmental Technology (United Kingdom), 2003, 24, 573-587.	2.2	43
582	Diffusional Properties of Methanogenic Granular Sludge: 1 H NMR Characterization. Applied and Environmental Microbiology, 2003, 69, 6644-6649.	3.1	24
583	Sulfidogenic volatile fatty acid degradation in a baffled reactor. Water Science and Technology, 2003, 48, 81-8.	2.5	1
584	Effect of nickel deprivation on methanol degradation in a methanogenic granular sludge bioreactor. Journal of Industrial Microbiology and Biotechnology, 2002, 29, 268-274.	3.0	30
585	Effect of Long-Term Cobalt Deprivation on Methanol Degradation in a Methanogenic Granular Sludge Bioreactor. Biotechnology Progress, 2002, 18, 1233-1239.	2.6	40
586	Perspectives of sulfate reducing bioreactors in environmental biotechnology. Reviews in Environmental Science and Biotechnology, 2002, 1, 311-325.	8.1	87
587	Effect of high salinity on the fate of methanol during the start-up of thermophilic (55 degrees C) sulfate reducing reactors. Water Science and Technology, 2002, 45, 121-6.	2.5	11
588	Effect of nickel deprivation on methanol degradation in a methanogenic granular sludge bioreactor. Journal of Industrial Microbiology and Biotechnology, 2002, 29, 268-274.	3.0	2
589	Effect of the Liquid Upflow Velocity on Thermophilic Sulphate Reduction in Acidifying Granular Sludge Reactors. Environmental Technology (United Kingdom), 2001, 22, 183-193.	2.2	18
590	Introduction. Journal of Industrial Microbiology and Biotechnology, 2001, 26, 1-1.	3.0	9
591	Cluster Structure of Anaerobic Aggregates of an Expanded Granular Sludge Bed Reactor. Applied and Environmental Microbiology, 2001, 67, 3683-3692.	3.1	112
592	Use of hydrophobic membranes to supply hydrogen to sulphate reducing bioreactors. Biodegradation, 2000, 11, 295-303.	3.0	18
593	Effect of nitrate on acetate degradation in a sulfidogenic staged reactor. Water Research, 2000, 34, 31-42.	11.3	15
594	Distribution of Sulfate-Reducing and Methanogenic Bacteria in Anaerobic Aggregates Determined by Microsensor and Molecular Analyses. Applied and Environmental Microbiology, 1999, 65, 4618-4629.	3.1	131

#	Article	IF	CITATIONS
595	Thermophilic sulphate reduction in upflow anaerobic sludge bed reactors under acidifying conditions. Process Biochemistry, 1999, 35, 509-522.	3.7	34
596	Kinetics of fatty acid degradation by psychrophilically grown anaerobic granular sludge. Bioresource Technology, 1999, 69, 241-248.	9.6	31
597	Psychrophilic anaerobic treatment of low strength wastewaters. Water Science and Technology, 1999, 39, 203.	2.5	43
598	H nmr characterisation of the diffusional properties of methanogenic granular sludge. Water Science and Technology, 1999, 39, 187.	2.5	15
599	Anaerobic treatment of sulphate-rich wastewaters. Biodegradation, 1998, 9, 213-224.	3.0	184
600	Nuclear magnetic resonance in environmental engineering: principles and applications. , 1998, 9, 393-409.		32
601	Mathematical modelling as a tool to study population dynamics between sulfate reducing and methanogenic bacteria. Biodegradation, 1998, 9, 187-199.	3.0	66
602	Title is missing!. Biodegradation, 1998, 9, 463-473.	3.0	41
603	13C-NMR study of propionate metabolism by sludges from bioreactors treating sulfate and sulfide rich wastewater. Biodegradation, 1998, 9, 179-186.	3.0	13
604	Psychrophilic (6-15 °C) High-Rate Anaerobic Treatment of Malting Wastewater in a Two-Module Expanded Granular Sludge Bed System. Biotechnology Progress, 1998, 14, 856-864.	2.6	27
605	Characterization of the diffusive properties of biofilms using pulsed field gradient-nuclear magnetic resonance. Biotechnology and Bioengineering, 1998, 60, 283-291.	3.3	62
606	LONG-TERM COMPETITION BETWEEN SULPHATE-REDUCING AND METHANE-PRODUCING BACTERIA DURING FULL-SCALE ANAEROBIC TREATMENT OF CITRIC ACID PRODUCTION WASTEWATER. Water Research, 1998, 32, 815-825.	11.3	100
607	Effect of staging on volatile fatty acid degradation in a sulfidogenic granular sludge reactor. Water Research, 1998, 32, 1178-1192.	11.3	64
608	Biotechnological Treatment of Sulfate-Rich Wastewaters. Critical Reviews in Environmental Science and Technology, 1998, 28, 41-88.	12.8	422
609	Treatment of Waste Gases Contaminated with Odorous Sulfur Compounds. Critical Reviews in Environmental Science and Technology, 1998, 28, 89-117.	12.8	212
610	Solid-State Reduced Sulfur Compounds: Environmental Aspects and Bio-Remediation. Critical Reviews in Environmental Science and Technology, 1998, 28, 1-40.	12.8	28
611	Use of 1H NMR to study transport processes in sulfidogenic granular sludge. Water Science and Technology, 1997, 36, 157-163.	2.5	21
612	Anaerobic treatment of partly acidified wastewater in a two-stage expanded granular sludge bed (EGSB) system at 8°C. Water Science and Technology, 1997, 36, 317-324.	2.5	74

#	Article	IF	CITATIONS
613	Use of h nmr to study transport processes in sulfidogenic granular sludge. Water Science and Technology, 1997, 36, 157.	2.5	8
614	Anaerobic treatment of partly acidified wastewater in a two-stage expanded granular sludge bed (egsb) system at 8°c. Water Science and Technology, 1997, 36, 317.	2.5	45
615	Effect of feed composition and upflow velocity on aggregate characteristics in anaerobic upflow reactors. Applied Microbiology and Biotechnology, 1997, 47, 102-107.	3.6	58
616	Effect of the inoculation with Desulforhabdus amnigenus and pH or O2 shocks on the competition between sulphate reducing and methanogenic bacteria in an acetate fed UASB reactor. Bioresource Technology, 1997, 60, 113-122.	9.6	38
617	Characterization of biomass from a sulfidogenic, volatile fatty acid-degrading granular sludge reactor. Enzyme and Microbial Technology, 1997, 20, 229-236.	3.2	39
618	Performance of a sulfide-oxidizing expanded-bed reactor supplied with dissolved oxygen. , 1997, 53, 32-40.		94
619	Distribution of extracellular polysaccharides and flotation of anaerobic sludge. Applied Microbiology and Biotechnology, 1996, 46, 197-201.	3.6	68
620	Use of Anaerobic Hybrid Reactors for Treatment of Synthetic Pharmaceutical Wastewaters Containing Organic Solvents. Journal of Chemical Technology and Biotechnology, 1996, 66, 251-264.	3.2	47
621	Propionate degradation by mesophilic anaerobic sludge: Degradation pathways and effects of other volatile fatty acids. Journal of Bioscience and Bioengineering, 1996, 82, 387-391.	0.9	18
622	Effect of upward velocity and sulphide concentration on volatile fatty acid degradation in a sulphidogenic granular sludge reactor. Process Biochemistry, 1996, 31, 699-710.	3.7	122
623	Anaerobic bioprocessing of organic wastes. World Journal of Microbiology and Biotechnology, 1996, 12, 221-238.	3.6	67
624	lsomerization of butyrate to isobutyrate byDesulforhabdus amnigenus. FEMS Microbiology Letters, 1996, 142, 237-241.	1.8	10
625	lsomerization of butyrate to isobutyrate by Desulforhabdus amnigenus. FEMS Microbiology Letters, 1996, 142, 237-241.	1.8	2
626	Anaerobic treatment of sulphate-containing waste streams. Antonie Van Leeuwenhoek, 1995, 67, 29-46.	1.7	225
627	The use of microsensors to determine population distributions in uasb aggregates. Water Science and Technology, 1995, 31, 273.	2.5	16
628	The use of microsensors to determine population distributions in UASB aggregates. Water Science and Technology, 1995, 31, 273-280.	2.5	49
629	Effect of sulfate concentration and scraping on aerobic fixed biofilm reactors. Water Research, 1995, 29, 857-870.	11.3	17
630	Sulfate reducing and methane producing bacteria in aerobic wastewater treatment systems. Water Research, 1995, 29, 871-880.	11.3	92

#	Article	IF	CITATIONS
631	Mass transfer limitation of sulfate in methanogenic aggregates. Biotechnology and Bioengineering, 1994, 44, 387-391.	3.3	37
632	Direct treatment of domestic wastewater by percolation over peat, bark and woodchips. Water Research, 1994, 28, 17-26.	11.3	71
633	Heterogeneous Distribution of Microbial Activity in Methanogenic Aggregates: pH and Glucose Microprofiles. Applied and Environmental Microbiology, 1993, 59, 3803-3815.	3.1	74
634	Bioprocess engineering of sulphate reduction for environmental technology. , 0, , 383-404.		6
635	Low Temperature Sulfate Reduction for AMD Treatment. Advanced Materials Research, 0, 71-73, 553-556.	0.3	0
636	Biological Production of Selenium Nanoparticles from Waste Waters. Advanced Materials Research, 0, 71-73, 721-724.	0.3	14
637	Nanotechnology for Water and Wastewater Treatment. Water Intelligence Online, 0, 12, .	0.3	10