Leanne M Dibbens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5183633/publications.pdf Version: 2024-02-01

LEANNE M DIRRENS

#	Article	IF	CITATIONS
1	The spectrum of SCN1A-related infantile epileptic encephalopathies. Brain, 2007, 130, 843-852.	7.6	501
2	Truncation of the GABAA-Receptor γ2 Subunit in a Family with Generalized Epilepsy with Febrile Seizures Plus. American Journal of Human Genetics, 2002, 70, 530-536.	6.2	425
3	X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment. Nature Genetics, 2008, 40, 776-781.	21.4	397
4	Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy. Nature Genetics, 2012, 44, 1188-1190.	21.4	333
5	<i>SCN1A</i> mutations and epilepsy. Human Mutation, 2005, 25, 535-542.	2.5	327
6	Neuronal Sodium-Channel α1-Subunit Mutations in Generalized Epilepsy with Febrile Seizures Plus. American Journal of Human Genetics, 2001, 68, 859-865.	6.2	316
7	Mutations in DEPDC5 cause familial focal epilepsy with variable foci. Nature Genetics, 2013, 45, 546-551.	21.4	301
8	GABRD encoding a protein for extra- or peri-synaptic GABAA receptors is a susceptibility locus for generalized epilepsies. Human Molecular Genetics, 2004, 13, 1315-1319.	2.9	299
9	<i>KCNT1</i> gain of function in 2 epilepsy phenotypes is reversed by quinidine. Annals of Neurology, 2014, 75, 581-590.	5.3	249
10	A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy. Nature Genetics, 2015, 47, 39-46.	21.4	245
11	Temporal lobe epilepsy and GEFS+ phenotypes associated with SCN1B mutations. Brain, 2006, 130, 100-109.	7.6	234
12	PRRT2 Mutations Cause Benign Familial Infantile Epilepsy and Infantile Convulsions with Choreoathetosis Syndrome. American Journal of Human Genetics, 2012, 90, 152-160.	6.2	234
13	Array-Based Gene Discovery with Three Unrelated Subjects Shows SCARB2/LIMP-2 Deficiency Causes Myoclonus Epilepsy and Glomerulosclerosis. American Journal of Human Genetics, 2008, 82, 673-684.	6.2	230
14	<i>GABRA1</i> and <i>STXBP1</i> : Novel genetic causes of Dravet syndrome. Neurology, 2014, 82, 1245-1253.	1.1	229
15	Exomeâ€based analysis of cardiac arrhythmia, respiratory control, and epilepsy genes in sudden unexpected death in epilepsy. Annals of Neurology, 2016, 79, 522-534.	5.3	216
16	Familial and sporadic 15q13.3 microdeletions in idiopathic generalized epilepsy: precedent for disorders with complex inheritance. Human Molecular Genetics, 2009, 18, 3626-3631.	2.9	211
17	Mutations in mammalian target of rapamycin regulator <i>DEPDC5</i> cause focal epilepsy with brain malformations. Annals of Neurology, 2014, 75, 782-787.	5.3	193
18	Reduced cortical inhibition in a mouse model of familial childhood absence epilepsy. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17536-17541.	7.1	192

#	Article	IF	CITATIONS
19	Mutations in the mammalian target of rapamycin pathway regulators <i>NPRL2</i> and <i>NPRL3</i> cause focal epilepsy. Annals of Neurology, 2016, 79, 120-131.	5.3	190
20	Epilepsy and mental retardation limited to females: an under-recognized disorder. Brain, 2008, 131, 918-927.	7.6	172
21	A Mutation in the Golgi Qb-SNARE Gene GOSR2 Causes Progressive Myoclonus Epilepsy with Early Ataxia. American Journal of Human Genetics, 2011, 88, 657-663.	6.2	166
22	A variant of <scp>KCC</scp> 2 from patients with febrile seizures impairs neuronal Cl ^{â^'} extrusion and dendritic spine formation. EMBO Reports, 2014, 15, 723-729.	4.5	163
23	Benign infantile seizures and paroxysmal dyskinesia caused by an <i>SCN8A</i> mutation. Annals of Neurology, 2016, 79, 428-436.	5.3	159
24	Dravet syndrome or genetic (generalized) epilepsy with febrile seizures plus?. Brain and Development, 2009, 31, 394-400.	1.1	152
25	<i>SCN1A</i> duplications and deletions detected in Dravet syndrome: Implications for molecular diagnosis. Epilepsia, 2009, 50, 1670-1678.	5.1	152
26	Copy number variants are frequent in genetic generalized epilepsy with intellectual disability. Neurology, 2013, 81, 1507-1514.	1.1	140
27	Genome-wide association analysis of genetic generalized epilepsies implicates susceptibility loci at 1q43, 2p16.1, 2q22.3 and 17q21.32. Human Molecular Genetics, 2012, 21, 5359-5372.	2.9	134
28	â€~North Sea' progressive myoclonus epilepsy: phenotype of subjects with GOSR2 mutation. Brain, 2013, 136, 1146-1154.	7.6	129
29	Genetic Architecture of Idiopathic Generalized Epilepsy: Clinical Genetic Analysis of 55 Multiplex Families. Epilepsia, 2004, 45, 467-478.	5.1	128
30	Effects of vaccination on onset and outcome of Dravet syndrome: a retrospective study. Lancet Neurology, The, 2010, 9, 592-598.	10.2	119
31	Mutations in <i><scp>KCNT</scp>1</i> cause a spectrum of focal epilepsies. Epilepsia, 2015, 56, e114-20.	5.1	117
32	Genetic epilepsy with febrile seizures plus. Neurology, 2017, 89, 1210-1219.	1.1	112
33	A Focal Epilepsy and Intellectual Disability Syndrome Is Due to a Mutation in TBC1D24. American Journal of Human Genetics, 2010, 87, 371-375.	6.2	111
34	Channelopathies in idiopathic epilepsy. Neurotherapeutics, 2007, 4, 295-304.	4.4	101
35	Timing of De Novo Mutagenesis — A Twin Study of Sodium-Channel Mutations. New England Journal of Medicine, 2010, 363, 1335-1340.	27.0	100
36	Augmented currents of an <i>HCN2</i> variant in patients with febrile seizure syndromes. Annals of Neurology, 2010, 67, 542-546.	5.3	96

#	Article	IF	CITATIONS
37	Familial cortical dysplasia type <scp>IIA</scp> caused by a germline mutation in <i><scp>DEPDC</scp>5</i> . Annals of Clinical and Translational Neurology, 2015, 2, 575-580.	3.7	95
38	<i>KCNT1</i> mutations in seizure disorders: the phenotypic spectrum and functional effects. Journal of Medical Genetics, 2016, 53, 217-225.	3.2	94
39	Susceptibility genes for complex epilepsy. Human Molecular Genetics, 2005, 14, R243-R249.	2.9	92
40	<i>SCARB2</i> mutations in progressive myoclonus epilepsy (PME) without renal failure. Annals of Neurology, 2009, 66, 532-536.	5.3	90
41	Role of <i>PRRT2</i> in common paroxysmal neurological disorders: a gene with remarkable pleiotropy. Journal of Medical Genetics, 2013, 50, 133-139.	3.2	88
42	Subunit Susceptibility Variants E177A and R220H Associated with Complex Epilepsy Alter Channel Gating and Surface Expression of Â4beta2Â GABAA Receptors. Journal of Neuroscience, 2006, 26, 1499-1506.	3.6	81
43	<i>PRRT2</i> phenotypic spectrum includes sporadic and fever-related infantile seizures. Neurology, 2012, 79, 2104-2108.	1.1	75
44	Epilepsy and mental retardation limited to females with PCDH19 mutations can present de novo or in single generation families. Journal of Medical Genetics, 2010, 47, 211-216.	3.2	74
45	Neonatal Epilepsy Syndromes and Generalized Epilepsy with Febrile Seizures Plus (GEFS+). Epilepsia, 2005, 46, 41-47.	5.1	63
46	Clinical and neurophysiologic features of progressive myoclonus epilepsy without renal failure caused by <i>SCARB2</i> mutations. Epilepsia, 2011, 52, 2356-2363.	5.1	63
47	Epileptic spasms are a feature of <i>DEPDC5</i> mTORopathy. Neurology: Genetics, 2015, 1, e17.	1.9	63
48	Role of the sodium channel <i><scp>SCN</scp>9A</i> in genetic epilepsy with febrile seizures plus and Dravet syndrome. Epilepsia, 2013, 54, e122-6.	5.1	62
49	Genetics of epilepsy. Neurology, 2014, 83, 1042-1048.	1.1	61
50	NEDD4-2as a potential candidate susceptibility gene for epileptic photosensitivity. Genes, Brain and Behavior, 2007, 6, 750-755.	2.2	56
51	A polygenic heterogeneity model for common epilepsies with complex genetics. Genes, Brain and Behavior, 2007, 6, 593-597.	2.2	52
52	Progressive myoclonus epilepsies—Residual unsolved cases have marked genetic heterogeneity including dolichol-dependent protein glycosylation pathway genes. American Journal of Human Genetics, 2021, 108, 722-738.	6.2	41
53	Knockout of the epilepsy gene Depdc5 in mice causes severe embryonic dysmorphology with hyperactivity of mTORC1 signalling. Scientific Reports, 2017, 7, 12618.	3.3	39
54	The role of neuronal GABAA receptor subunit mutations in idiopathic generalized epilepsies. Neuroscience Letters, 2009, 453, 162-165.	2.1	37

#	Article	IF	CITATIONS
55	<i>KCNT1</i> -related epilepsies and epileptic encephalopathies: phenotypic and mutational spectrum. Brain, 2021, 144, 3635-3650.	7.6	34
56	<i>GOSR2</i> : a progressive myoclonus epilepsy gene. Epileptic Disorders, 2016, 18, 111-114.	1.3	32
57	PRRT2 mutation in Japanese children with benign infantile epilepsy. Brain and Development, 2013, 35, 641-646.	1.1	31
58	Mutation of SCARB2 in a Patient With Progressive Myoclonus Epilepsy and Demyelinating Peripheral Neuropathy. Archives of Neurology, 2011, 68, 812-3.	4.5	28
59	SCARB2/LIMP2 deficiency in action myoclonus-renal failure syndrome. Epileptic Disorders, 2016, 18, 63-72.	1.3	26
60	Mild malformations of cortical development in sleepâ€related hypermotor epilepsy due to <i>KCNT1</i> mutations. Annals of Clinical and Translational Neurology, 2019, 6, 386-391.	3.7	25
61	Gene expression analysis in absence epilepsy using a monozygotic twin design. Epilepsia, 2008, 49, 1546-1554.	5.1	24
62	Multiplex families with epilepsy. Neurology, 2016, 86, 713-722.	1.1	23
63	Does a <i>SCN1A</i> gene mutation confer earlier age of onset of febrile seizures in GEFS+?. Epilepsia, 2009, 50, 953-956.	5.1	22
64	The Role of Seizure-Related <i>SEZ6</i> as a Susceptibility Gene in Febrile Seizures. Neurology Research International, 2011, 2011, 1-4.	1.3	20
65	Autosomal dominant vasovagal syncope. Neurology, 2013, 80, 1485-1493.	1.1	20
66	SCN1A variations and response to multiple antiepileptic drugs. Pharmacogenomics Journal, 2014, 14, 385-389.	2.0	20
67	<i>BRAT1</i> â€associated neurodegeneration: Intraâ€familial phenotypic differences in siblings. American Journal of Medical Genetics, Part A, 2016, 170, 3033-3038.	1.2	18
68	Chipping away at the common epilepsies with complex genetics: the 15q13.3 microdeletion shows the way. Genome Medicine, 2009, 1, 33.	8.2	17
69	A case of severe hearing loss in action myoclonus renal failure syndrome resulting from mutation in <i>SCARB2</i> . Movement Disorders, 2012, 27, 1200-1201.	3.9	17
70	Atypical multifocal <scp>D</scp> ravet syndrome lacks generalized seizures and may show later cognitive decline. Developmental Medicine and Child Neurology, 2014, 56, 85-90.	2.1	16
71	Detection of microchromosomal aberrations in refractory epilepsy: a pilot study. Epileptic Disorders, 2010, 12, 192-198.	1.3	14
72	Single Nucleotide Variations in CLCN6 Identified in Patients with Benign Partial Epilepsies in Infancy and/or Febrile Seizures. PLoS ONE, 2015, 10, e0118946.	2.5	13

#	Article	IF	CITATIONS
73	Mutations in <i><scp>PRRT</scp>2</i> are not a common cause of infantile epileptic encephalopathies. Epilepsia, 2013, 54, e86-9.	5.1	12
74	Rare protein sequence variation in SV2A gene does not affect response to levetiracetam. Epilepsy Research, 2012, 101, 277-279.	1.6	11
75	Do mutations in SCN1B cause Dravet syndrome?. Epilepsy Research, 2013, 103, 97-100.	1.6	11
76	Is Photosensitive Epilepsy Less Common in Males Due to Variation in X Chromosome Photopigment Genes?. Epilepsia, 2007, 48, 1807-1809.	5.1	10
77	Proposed genetic classification of the "benign―familial neonatal and infantile epilepsies. Epilepsia, 2011, 52, 649-650.	5.1	9
78	Investigation of the 15q13.3 CNV as a genetic modifier for familial epilepsies with variable phenotypes. Epilepsia, 2011, 52, e139-e142.	5.1	9
79	Febrile infection-related epilepsy syndrome is not caused by SCN1A mutations. Epilepsy Research, 2012, 100, 194-198.	1.6	9
80	Abnormal Processing of Autophagosomes in Transformed B Lymphocytes from SCARB2-Deficient Subjects. BioResearch Open Access, 2013, 2, 40-46.	2.6	9
81	Genetics of the epilepsies: Genetic twists in the channels and other tales. Epilepsia, 2010, 51, 33-36.	5.1	8
82	Evaluation of multiple putative risk alleles within the 15q13.3 region for genetic generalized epilepsy. Epilepsy Research, 2015, 117, 70-73.	1.6	6
83	Genetic variations and associated pathophysiology in the management of epilepsy. The Application of Clinical Genetics, 2011, 4, 113.	3.0	4
84	"Blinders, phenotype, and fashionable genetic analysis― Setting the record straight for epilepsy!. Epilepsia, 2011, 52, 1757-1758.	5.1	2
85	Reply. Annals of Neurology, 2016, 80, 168-169.	5.3	0
86	Novel ID gene CSNK2B : The crossover from molecular diagnosis to research continues. Human Mutation, 2017, 38, 1037-1037.	2.5	0