
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5182468/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of biochar on the fate of conazole fungicides in soils and their bioavailability to earthworms and plants. Environmental Science and Pollution Research, 2022, 29, 23323-23337.	5.3	2
2	Structureâ€function analysis of two closely related cutinases from <i>Thermobifida cellulosilytica</i> . Biotechnology and Bioengineering, 2022, 119, 470-481.	3.3	15
3	Residue-Specific Incorporation of the Non-Canonical Amino Acid Norleucine Improves Lipase Activity on Synthetic Polyesters. Frontiers in Bioengineering and Biotechnology, 2022, 10, 769830.	4.1	3
4	Comparison of Carbonic Anhydrases for CO2 Sequestration. International Journal of Molecular Sciences, 2022, 23, 957.	4.1	12
5	Effect of Binding Modules Fused to Cutinase on the Enzymatic Synthesis of Polyesters. Catalysts, 2022, 12, 303.	3.5	3
6	Biochar surface functional groups as affected by biomass feedstock, biochar composition and pyrolysis temperature. Carbon Resources Conversion, 2021, 4, 36-46.	5.9	155
7	Tuning of adsorption of enzymes to polymer. Methods in Enzymology, 2021, 648, 293-315.	1.0	5
8	Conazole fungicides epoxiconazole and tebuconazole in biochar amended soils: Degradation and bioaccumulation in earthworms. Chemosphere, 2021, 274, 129700.	8.2	6
9	A Simple and Straightforward Method for Activity Measurement of Carbonic Anhydrases. Catalysts, 2021, 11, 819.	3.5	6
10	Together Is Better: The Rumen Microbial Community as Biological Toolbox for Degradation of Synthetic Polyesters. Frontiers in Bioengineering and Biotechnology, 2021, 9, .	4.1	19
11	Comparison of a fungal and a bacterial laccase for lignosulfonate polymerization. Process Biochemistry, 2021, 109, 207-213.	3.7	12
12	Oxidation of Various Kraft Lignins with a Bacterial Laccase Enzyme. International Journal of Molecular Sciences, 2021, 22, 13161.	4.1	13
13	Natural Deep Eutectic Solvents as Performance Additives for Peroxygenase Catalysis. ChemCatChem, 2020, 12, 989-994.	3.7	26
14	A Fungal Ascorbate Oxidase with Unexpected Laccase Activity. International Journal of Molecular Sciences, 2020, 21, 5754.	4.1	11
15	High Throughput Screening for New Fungal Polyester Hydrolyzing Enzymes. Frontiers in Microbiology, 2020, 11, 554.	3.5	20
16	Polyphenol oxidases exhibit promiscuous proteolytic activity. Communications Chemistry, 2020, 3, .	4.5	25
17	Shotgun proteomics reveals putative polyesterases in the secretome of the rock-inhabiting fungus Knufia chersonesos. Scientific Reports, 2020, 10, 9770.	3.3	14
18	Enantioselective Sulfoxidation of Thioanisole by Cascading a Choline Oxidase and a Peroxygenase in the Presence of Natural Deep Eutectic Solvents. ChemPlusChem, 2020, 85, 254-257.	2.8	22

#	Article	IF	CITATIONS
19	Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnology Advances, 2020, 40, 107520.	11.7	97
20	Surface functionalization of polyester. Methods in Enzymology, 2019, 627, 339-360.	1.0	3
21	Natural Deep Eutectic Solvents as Multifunctional Media for the Valorization of Agricultural Wastes. ChemSusChem, 2019, 12, 1310-1315.	6.8	37
22	Switched reaction specificity in polyesterases towards amide bond hydrolysis by enzyme engineering. RSC Advances, 2019, 9, 36217-36226.	3.6	15
23	Surface engineering of polyester-degrading enzymes to improve efficiency and tune specificity. Applied Microbiology and Biotechnology, 2018, 102, 3551-3559.	3.6	51
24	Synergistic effect of mutagenesis and truncation to improve a polyesterase from Clostridium botulinum for polyester hydrolysis. Scientific Reports, 2018, 8, 3745.	3.3	27
25	Enzymes as Enhancers for the Biodegradation of Synthetic Polymers in Wastewater. ChemBioChem, 2018, 19, 317-325.	2.6	17
26	A new arylesterase from Pseudomonas pseudoalcaligenes can hydrolyze ionic phthalic polyesters. Journal of Biotechnology, 2017, 257, 70-77.	3.8	13
27	Engineering of the zinc-binding domain of an esterase from Clostridium botulinum towards increased activity on polyesters. Catalysis Science and Technology, 2017, 7, 1440-1447.	4.1	14
28	Enzymatic Hydrolysis of Polyester Thin Films at the Nanoscale: Effects of Polyester Structure and Enzyme Active-Site Accessibility. Environmental Science & Technology, 2017, 51, 7476-7485.	10.0	89
29	Hydrolysis of Ionic Phthalic Acid Based Polyesters by Wastewater Microorganisms and Their Enzymes. Environmental Science & Technology, 2017, 51, 4596-4605.	10.0	35
30	PpEst is a novel PBAT degrading polyesterase identified by proteomic screening of Pseudomonas pseudoalcaligenes. Applied Microbiology and Biotechnology, 2017, 101, 2291-2303.	3.6	82
31	Small cause, large effect: Structural characterization of cutinases from <i>Thermobifida cellulosilytica</i> . Biotechnology and Bioengineering, 2017, 114, 2481-2488.	3.3	56
32	Polyol Structure Influences Enzymatic Hydrolysis of Bioâ€Based 2,5â€Furandicarboxylic Acid (FDCA) Polyesters. Biotechnology Journal, 2017, 12, 1600741.	3.5	29
33	Polyester hydrolysis is enhanced by a truncated esterase: Less is more. Biotechnology Journal, 2017, 12,	3.5	26
34	Enzymatic Degradation of Aromatic and Aliphatic Polyesters by P. pastoris Expressed Cutinase 1 from Thermobifida cellulosilytica. Frontiers in Microbiology, 2017, 8, 938.	3.5	62
35	Polyol Structure and Ionic Moieties Influence the Hydrolytic Stability and Enzymatic Hydrolysis of Bio-Based 2,5-Furandicarboxylic Acid (FDCA) Copolyesters. Polymers, 2017, 9, 403.	4.5	16
36	Combining expression and process engineering for high-quality production of human sialyltransferase in Pichia pastoris. Journal of Biotechnology, 2016, 235, 54-60.	3.8	9

#	Article	IF	CITATIONS
37	Two N-terminally truncated variants of human β-galactoside α2,6 sialyltransferase I with distinct properties for inÂvitro protein glycosylation. Glycobiology, 2016, 26, 1097-1106.	2.5	7
38	Hydrolysis of synthetic polyesters by <i>Clostridium botulinum</i> esterases. Biotechnology and Bioengineering, 2016, 113, 1024-1034.	3.3	65
39	The Closure of the Cycle: Enzymatic Synthesis and Functionalization of Bio-Based Polyesters. Trends in Biotechnology, 2016, 34, 316-328.	9.3	107
40	Characterization of a poly(butylene adipate-co-terephthalate)-hydrolyzing lipase from Pelosinus fermentans. Applied Microbiology and Biotechnology, 2016, 100, 1753-1764.	3.6	75
41	An Esterase from Anaerobic <i>Clostridium hathewayi</i> Can Hydrolyze Aliphatic–Aromatic Polyesters. Environmental Science & Technology, 2016, 50, 2899-2907.	10.0	39
42	Data on synthesis of oligomeric and polymeric poly(butylene adipate-co-butylene terephthalate) model substrates for the investigation of enzymatic hydrolysis. Data in Brief, 2016, 7, 291-298.	1.0	11
43	Improving enzymatic polyurethane hydrolysis by tuning enzyme sorption. Polymer Degradation and Stability, 2016, 132, 69-77.	5.8	85
44	Substrate specificities of cutinases on aliphatic–aromatic polyesters and on their model substrates. New Biotechnology, 2016, 33, 295-304.	4.4	56
45	Biomimetic Approach to Enhance Enzymatic Hydrolysis of the Synthetic Polyester Poly(1,4-butylene) Tj ETQq1 1	0.784314 5.4	rgBT /Overlo
46	Complete switch from α-2,3- to α-2,6-regioselectivity in Pasteurella dagmatis β- <scp>d</scp> -galactoside sialyltransferase by active-site redesign. Chemical Communications, 2015, 51, 3083-3086.	4.1	41
47	All-in-one assay for β-d-galactoside sialyltransferases: Quantification of productive turnover, error hydrolysis, and site selectivity. Analytical Biochemistry, 2015, 483, 47-53.	2.4	9
48	Enhanced Cutinase-Catalyzed Hydrolysis of Polyethylene Terephthalate by Covalent Fusion to Hydrophobins. Applied and Environmental Microbiology, 2015, 81, 3586-3592.	3.1	149
49	Identification and Application of Enantiocomplementary Lactamases for Vince Lactam Derivatives. ChemCatChem, 2014, 6, 2517-2521.	3.7	18
50	High-quality production of human α-2,6-sialyltransferase in Pichia pastoris requires control over N-terminal truncations by host-inherent protease activities. Microbial Cell Factories, 2014, 13, 138.	4.0	9
51	Green polymer processing with enzymes. New Biotechnology, 2014, 31, S31.	4.4	0
52	Mechanistic study of CMP-Neu5Ac hydrolysis by α2,3-sialyltransferase fromPasteurella dagmatis. FEBS Letters, 2014, 588, 2978-2984.	2.8	17
53	Fusion of Binding Domains to Thermobifida cellulosilytica Cutinase to Tune Sorption Characteristics and Enhancing PET Hydrolysis. Biomacromolecules, 2013, 14, 1769-1776.	5.4	137
54	Two Novel Class II Hydrophobins from Trichoderma spp. Stimulate Enzymatic Hydrolysis of Poly(Ethylene Terephthalate) when Expressed as Fusion Proteins. Applied and Environmental Microbiology, 2013, 79, 4230-4238.	3.1	86

#	Article	IF	CITATIONS
55	Characterization of a multifunctional α2,3-sialyltransferase from Pasteurella dagmatis. Glycobiology, 2013, 23, 1293-1304.	2.5	29
56	Surface engineering of a cutinase from <i>Thermobifida cellulosilytica</i> for improved polyester hydrolysis. Biotechnology and Bioengineering, 2013, 110, 2581-2590.	3.3	118
57	Characterization of a new cutinase from <i>Thermobifida alba</i> for PET-surface hydrolysis. Biocatalysis and Biotransformation, 2012, 30, 2-9.	2.0	125
58	A New Esterase from Thermobifida halotolerans Hydrolyses Polyethylene Terephthalate (PET) and Polylactic Acid (PLA). Polymers, 2012, 4, 617-629.	4.5	146
59	Extracellular serine proteases from Stenotrophomonas maltophilia: Screening, isolation and heterologous expression in E. coli. Journal of Biotechnology, 2012, 157, 140-147.	3.8	37
60	Two-step enzymatic functionalisation of polyamide with phenolics. Journal of Molecular Catalysis B: Enzymatic, 2012, 79, 54-60.	1.8	35
61	Enzymatic Surface Hydrolysis of PET: Effect of Structural Diversity on Kinetic Properties of Cutinases from Thermobifida. Macromolecules, 2011, 44, 4632-4640.	4.8	298
62	Hydrolysis of polyethyleneterephthalate by <i>p</i> â€nitrobenzylesterase from <i>Bacillus subtilis</i> . Biotechnology Progress, 2011, 27, 951-960.	2.6	138
63	Engineering of choline oxidase from Arthrobacter nicotianae for potential use as biological bleach in detergents. Applied Microbiology and Biotechnology, 2010, 87, 1743-1752.	3.6	15
64	C-terminal truncation of a metagenome-derived detergent protease for effective expression in E. coli. Journal of Biotechnology, 2010, 150, 408-416.	3.8	24
65	Equalizer technology – Equal rights for disparate beads. Proteomics, 2010, 10, 2089-2098.	2.2	54
66	A novel aryl acylamidase from <i>Nocardia farcinica</i> hydrolyses polyamide. Biotechnology and Bioengineering, 2009, 102, 1003-1011.	3.3	46
67	Heterologous expression and characterization of Choline Oxidase from the soil bacterium Arthrobacter nicotianae. Applied Microbiology and Biotechnology, 2009, 81, 875-886.	3.6	16