Norbert Schorghofer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5182139/publications.pdf

Version: 2024-02-01

105	3,533	33	57
papers	citations	h-index	g-index
110	110	110	2213
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Gradual Sequestration of Water at Lunar Polar Conditions due to Temperature Cycles. Astrophysical Journal Letters, 2022, 927, L34.	8.3	3
2	Stratigraphic and Isotopic Evolution of the Martian Polar Caps From Paleo limate Models. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	4
3	Statistical Thermodynamics of Surface-Bounded Exospheres. Earth, Moon and Planets, 2022, 126, 1.	0.6	1
4	Ice caves on Mars: Hoarfrost and microclimates. Icarus, 2021, 357, 114271.	2.5	3
5	Micro cold traps on the Moon. Nature Astronomy, 2021, 5, 169-175.	10.1	63
6	Science Opportunities offered by Mercury's Ice-Bearing Polar Deposits. , 2021, 53, .		0
7	Robot Technology Advancements for In-Situ Exploration of Subsurface Environments. , 2021, 53, .		O
8	Solar-System-Wide Significance of Mars Polar Science. , 2021, 53, .		2
9	GANGOTRI mission concept on the glacial key to the Amazonian climate of Mars. , 2021, 53, .		1
10	New Approaches to Lunar Ice Detection and Mapping. , 2021, 53, .		2
11	Erosion of Volatiles by Micrometeoroid Bombardment on Ceres and Comparison to the Moon and Mercury. Planetary Science Journal, 2021, 2, 85.	3.6	6
12	A roadmap for planetary caves science and exploration. Nature Astronomy, 2021, 5, 524-525.	10.1	19
13	Replenishment of Nearâ€Surface Water Ice by Impacts Into Ceres' Volatileâ€Rich Crust: Observations by Dawn's Gamma Ray and Neutron Detector. Geophysical Research Letters, 2021, 48, e2021GL094223.	4.0	2
14	Water Group Exospheres and Surface Interactions on the Moon, Mercury, and Ceres. Space Science Reviews, 2021, 217, 1.	8.1	21
15	Freeze–thaw cycles and snow impact at arid permafrost region in Chajnantor Volcano, Atacama, northern Chile. Arctic, Antarctic, and Alpine Research, 2021, 53, 60-66.	1.1	7
16	Carbon Dioxide Cold Traps on the Moon. Geophysical Research Letters, 2021, 48, .	4.0	20
17	CaSSIS color and multi-angular observations of Martian slope streaks. Planetary and Space Science, 2021, 209, 105373.	1.7	6
18	Slope, elevation, and thermal inertia trends of martian recurring slope lineae initiation and termination points: Multiple possible processes occurring on coarse, sandy slopes. Icarus, 2020, 338, 113536.	2.5	21

#	Article	IF	CITATIONS
19	Equilibrium Temperatures and Directional Emissivity of Sunlit Airless Surfaces With Applications to the Moon. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006377.	3.6	9
20	Potential Themis-family Asteroid Contribution to the Jupiter-family Comet Population. Astronomical Journal, 2020, 159, 179.	4.7	15
21	Mars: Quantitative Evaluation of Crocus Melting behind Boulders. Astrophysical Journal, 2020, 890, 49.	4.5	9
22	Mapping of Ice Storage Processes on the Moon with Time-dependent Temperatures. Planetary Science Journal, 2020, 1, 54.	3.6	23
23	Preservation of polar ice on near-Earth asteroids originating in the outer main belt: A model study with dynamical trajectories. Icarus, 2020, 348, 113865.	2.5	5
24	Elemental composition and mineralogy of Vesta and Ceres: Distribution and origins of hydrogen-bearing species. Icarus, 2019, 318, 42-55.	2.5	34
25	Seasonal Polar Temperatures on the Moon. Journal of Geophysical Research E: Planets, 2019, 124, 2505-2521.	3.6	80
26	Snow cover in Hawaiâ€i (1893–1953) and its effect on ground temperature. Arctic, Antarctic, and Alpine Research, 2019, 51, 148-154.	1.1	1
27	The Temporal and Geographic Extent of Seasonal Cold Trapping on the Moon. Journal of Geophysical Research E: Planets, 2019, 124, 1935-1944.	3.6	21
28	Highâ€Resolution Thermal Environment of Recurring Slope Lineae in Palikir Crater, Mars, and Its Implications for Volatiles. Journal of Geophysical Research E: Planets, 2019, 124, 2852-2862.	3.6	10
29	Spectrophotometric modeling and mapping of Ceres. Icarus, 2019, 322, 144-167.	2.5	21
30	A Global Inventory of Iceâ€Related Morphological Features on Dwarf Planet Ceres: Implications for the Evolution and Current State of the Cryosphere. Journal of Geophysical Research E: Planets, 2019, 124, 1650-1689.	3.6	33
31	Dynamic and isotopic evolution of ice reservoirs on Mars. Icarus, 2019, 324, 1-7.	2.5	15
32	Landslides on Ceres: Inferences Into Ice Content and Layering in the Upper Crust. Journal of Geophysical Research E: Planets, 2019, 124, 1512-1524.	3.6	16
33	Water Vapor Contribution to Ceres' Exosphere From Observed Surface Ice and Postulated Iceâ€Exposing Impacts. Journal of Geophysical Research E: Planets, 2019, 124, 61-75.	3.6	20
34	Exposed H2O-rich areas detected on Ceres with the dawn visible and infrared mapping spectrometer. lcarus, 2019, 318, 22-41.	2.5	47
35	Cryogenic Minerals in Hawaiian Lava Tubes: A Geochemical and Microbiological Exploration. Geomicrobiology Journal, 2018, 35, 227-241.	2.0	15
36	The Coldest Places in Hawaii: The Ice-Preserving Microclimates of High-Altitude Craters and Caves on Tropical Island Volcanoes. Bulletin of the American Meteorological Society, 2018, 99, 2313-2324.	3.3	8

#	Article	IF	Citations
37	Ice Loss From the Interior of Small Airless Bodies According to an Idealized Model. Journal of Geophysical Research E: Planets, 2018, 123, 2322-2335.	3.6	13
38	Non-gravitational acceleration in the trajectory of 11/2017 U1 ( Oumuamua). Nature, 2018, 559, 223-226.	27.8	138
39	Theoretical time variability of mobile water on the Moon and its geographic pattern. Icarus, 2017, 298, 111-116.	2.5	13
40	Geomorphological evidence for ground ice on dwarf planet Ceres. Nature Geoscience, 2017, 10, 338-343.	12.9	83
41	Ceres's obliquity history and its implications for the permanently shadowed regions. Geophysical Research Letters, 2017, 44, 2652-2661.	4.0	29
42	Surface water-ice deposits in the northern shadowed regions of Ceres. Nature Astronomy, 2017, 1, .	10.1	70
43	Extensive water ice within Ceres' aqueously altered regolith: Evidence from nuclear spectroscopy. Science, 2017, 355, 55-59.	12.6	169
44	Conditions for Sublimating Water Ice to Supply Ceres' Exosphere. Journal of Geophysical Research E: Planets, 2017, 122, 1984-1995.	3.6	40
45	Pitted terrains on (1) Ceres and implications for shallow subsurface volatile distribution. Geophysical Research Letters, 2017, 44, 6570-6578.	4.0	48
46	State of Highâ€Altitude Permafrost on Tropical Maunakea Volcano, Hawaii. Permafrost and Periglacial Processes, 2017, 28, 685-697.	3.4	9
47	Recent Climate Variations. , 2017, , 497-525.		8
48	The Putative Cerean Exosphere. Astrophysical Journal, 2017, 850, 85.	4.5	19
49	Lunar Atmosphere, Transport and Storage of Volatiles. , 2017, , 1-4.		2
50	PERMAFROST AND PERCHED GROUNDWATER ON THE SUMMIT PLATEAU OF MAUNAKEA VOLCANO, HAWAII. , 2017, , .		0
51	HIDDEN ICE ON DWARF PLANET CERES: RESULTS FROM THE DAWN MISSION. , 2017, , .		0
52	The permanently shadowed regions of dwarf planet Ceres. Geophysical Research Letters, 2016, 43, 6783-6789.	4.0	52
53	Subsurface architecture of two tropical alpine desert cinder cones that hold water. Journal of Geophysical Research F: Earth Surface, 2016, 121, 1148-1160.	2.8	5
54	The geomorphology of Ceres. Science, 2016, 353, .	12.6	109

#	Article	IF	CITATIONS
55	Predictions of depth-to-ice on asteroids based on an asynchronous model of temperature, impact stirring, and ice loss. Icarus, 2016, 276, 88-95.	2.5	56
56	Massive Ice Loss from the Mauna Loa Icecave, Hawaii. Arctic, Antarctic, and Alpine Research, 2016, 48, 33-43.	1.1	13
57	THE GEOMORPHOLOGY OF CERES. , 2016, , .		0
58	ELEMENTAL CONSTRAINTS ON CERES' EVOLUTION., 2016,,.		0
59	Two-dimensional description of surface-bounded exospheres with application to the migration of water molecules on the Moon. Physical Review E, 2015, 91, 052154.	2.1	10
60	The main-belt comets: The Pan-STARRS1 perspective. Icarus, 2015, 248, 289-312.	2.5	48
61	Slope Streak (Mars). , 2015, , 1980-1986.		0
62	Triangular Scar (Mars). , 2015, , 2192-2194.		0
63	Slope Streak (Mars). , 2014, , 1-8.		0
64	Subsurface air flow on Mars. Nature Physics, 2014, 10, 14-15.	16.7	3
65	Migration calculations for water in the exosphere of the Moon: Duskâ€dawn asymmetry, heterogeneous trapping, and D/H fractionation. Geophysical Research Letters, 2014, 41, 4888-4893.	4.0	29
66	THE LUNAR THERMAL ICE PUMP. Astrophysical Journal, 2014, 788, 169.	4.5	44
67	Properties of martian slope streak populations. Icarus, 2013, 225, 194-199.	2.5	79
68	Dynamic Landmarking for Surface Feature Identification and Change Detection. ACM Transactions on Intelligent Systems and Technology, 2012, 3, 1-22.	4.5	13
69	History and anatomy of subsurface ice on Mars. Icarus, 2012, 220, 1112-1120.	2.5	68
70	Measurements of thermal properties of icy Mars regolith analogs. Journal of Geophysical Research, 2012, 117, .	3.3	41
71	Sporadic formation of slope streaks on Mars. Icarus, 2011, 216, 159-168.	2.5	92
72	Fast numerical method for growth and retreat of subsurface ice on Mars. Icarus, 2010, 208, 598-607.	2.5	23

#	Article	IF	CITATIONS
73	Expressions for tidal conversion at seafloor topography using physical space integrals. Fluid Dynamics Research, 2010, 42, 065503.	1.3	1
74	Buffering of sublimation loss of subsurface ice by percolating snowmelt: a theoretical analysis. Permafrost and Periglacial Processes, 2009, 20, 309-313.	3.4	8
75	Laboratory experiments and models of diffusive emplacement of ground ice on Mars. Journal of Geophysical Research, 2009, 114 , .	3.3	32
76	H layering in the top meter of Mars. Icarus, 2008, 196, 409-421.	2.5	32
77	Temperature response of Mars to Milankovitch cycles. Geophysical Research Letters, 2008, 35, .	4.0	33
78	The Lifetime of Ice on Main Belt Asteroids. Astrophysical Journal, 2008, 682, 697-705.	4.5	164
79	Theory of ground ice stability in sublimation environments. Physical Review E, 2007, 75, 041201.	2.1	16
80	Water vapor diffusion in Mars subsurface environments. Journal of Geophysical Research, 2007, 112, .	3.3	79
81	Subsurface migration of H2O at lunar cold traps. Journal of Geophysical Research, 2007, 112, .	3.3	83
82	Three decades of slope streak activity on Mars. Icarus, 2007, 191, 132-140.	2.5	104
83	Dynamics of ice ages on Mars. Nature, 2007, 449, 192-194.	27.8	87
84	Subsurface ice on Mars with rough topography. Journal of Geophysical Research, 2006, 111, .	3.3	99
85	Seasonal surface frost at low latitudes on Mars. Icarus, 2006, 180, 321-334.	2.5	73
86	Stability and exchange of subsurface ice on Mars. Journal of Geophysical Research, 2005, 110, .	3.3	176
87	A physical mechanism for long-term survival of ground ice in Beacon Valley, Antarctica. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	25
88	A distinct class of avalanche scars on Mars. Icarus, 2004, 168, 122-130.	2.5	42
89	Spontaneous channelization in permeable ground: theory, experiment, and observation. Journal of Fluid Mechanics, 2004, 503, 357-374.	3.4	94
90	Slope streak formation and dust deposition rates on Mars. Journal of Geophysical Research, 2003, 108,	3.3	106

#	Article	IF	CITATIONS
91	Statistics of velocity gradients in two-dimensional Navier-Stokes and ocean turbulence. Physical Review E, 2002, 65, 026307.	2.1	6
92	Drainage basins and channel incision on Mars. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1780-1783.	7.1	96
93	Acausal relations between topographic slope and drainage area. Geophysical Research Letters, 2002, 29, 11-1.	4.0	30
94	Slope streaks on Mars: Correlations with surface properties and the potential role of water. Geophysical Research Letters, 2002, 29, 41-1-41-4.	4.0	60
95	Regular and chaotic streamlines of two vortex rings. Fluid Dynamics Research, 2001, 29, 295-311.	1.3	2
96	Basins of attraction on random topography. Physical Review E, 2001, 63, 026112.	2.1	13
97	Equipartition in a Model of Turbulence. EPJ Direct, 2000, 1, 1-5.	0.1	0
98	Two vortex rings produce chaos. Europhysics Letters, 2000, 52, 399-405.	2.0	4
99	Universality of probability distributions among two-dimensional turbulent flows. Physical Review E, 2000, 61, 6568-6571.	2.1	12
100	Energy spectra of steady two-dimensional turbulent flows. Physical Review E, 2000, 61, 6572-6577.	2.1	34
101	Front formation in an active scalar equation. Physical Review E, 1999, 60, 2858-2863.	2.1	17
102	Nonsingular surface quasi-geostrophic flow. Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 241, 168-172.	2.1	57
103	Scaling and linear response in the GOY turbulence model. Physica D: Nonlinear Phenomena, 1997, 100, 165-186.	2.8	17
104	Inelastic collapse of rotating spheres. Physical Review E, 1996, 54, 5511-5515.	2.1	21
105	How the viscous subrange determines inertial range properties in turbulence shell models. Physica D: Nonlinear Phenomena, 1995, 88, 40-54.	2.8	21