
Thomas Stützle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5181473/publications.pdf Version: 2024-02-01

ΤΗΟΜΛς STÃ1/4 ΤΖΙ Ε

#	Article	IF	CITATIONS
1	A landscape-based analysis of fixed temperature and simulated annealing. European Journal of Operational Research, 2023, 304, 395-410.	3.5	3
2	Evaluating the impact of grammar complexity in automatic algorithm design. International Transactions in Operational Research, 2022, 29, 2789-2814.	1.8	2
3	PSO-X: A Component-Based Framework for the Automatic Design of Particle Swarm Optimization Algorithms. IEEE Transactions on Evolutionary Computation, 2022, 26, 402-416.	7.5	23
4	Metaphor-based metaheuristics, a call for action: the elephant in the room. Swarm Intelligence, 2022, 16, 1-6.	1.3	45
5	An analysis of why cuckoo search does not bring any novel ideas to optimization. Computers and Operations Research, 2022, 142, 105747.	2.4	17
6	Preface to the Special Cluster on Stochastic Local Search: Recent Developments and Trends. International Transactions in Operational Research, 2022, 29, 2735-2736.	1.8	1
7	Population-Based Metaheuristics. EURO Advanced Tutorials on Operational Research, 2021, , 95-130.	0.6	0
8	Single Solution Metaheuristics. EURO Advanced Tutorials on Operational Research, 2021, , 61-94.	0.6	0
9	Automatic design of hybrid stochastic local search algorithms for permutation flowshop problems with additional constraints. Operations Research Perspectives, 2021, 8, 100180.	1.2	4
10	Automatic Design for Matheuristics. EURO Advanced Tutorials on Operational Research, 2021, , 35-57.	0.6	1
11	Automated algorithm configuration and design. , 2021, , .		0
12	A computational study on ant colony optimization for the traveling salesman problem with dynamic demands. Computers and Operations Research, 2021, 135, 105359.	2.4	16
13	A Causal Framework for Understanding Optimisation Algorithms. Lecture Notes in Computer Science, 2021, , 140-145.	1.0	0
14	Very Large-Scale Neighborhood Search. EURO Advanced Tutorials on Operational Research, 2021, , 143-158.	0.6	2
15	ANTS 2020 Special Issue: Editorial. Swarm Intelligence, 2021, 15, 311-313.	1.3	0
16	Special issue on "Stochastic Local Search: Recent developments and trends― International Transactions in Operational Research, 2020, 27, 1263-1264.	1.8	0
17	Automatic Algorithm Design for Hybrid Flowshop Scheduling Problems. European Journal of Operational Research, 2020, 282, 835-845.	3.5	20
18	Automatically Designing State-of-the-Art Multi- and Many-Objective Evolutionary Algorithms. Evolutionary Computation, 2020, 28, 195-226.	2.3	25

#	Article	IF	CITATIONS
19	Automatic Configuration of Multi-objective Optimizers and Multi-objective Configuration. Studies in Computational Intelligence, 2020, , 69-92.	0.7	9
20	Grey Wolf, Firefly and Bat Algorithms: Three Widespread Algorithms that Do Not Contain Any Novelty. Lecture Notes in Computer Science, 2020, , 121-133.	1.0	44
21	Iterative improvement in the automatic modular design of robot swarms. PeerJ Computer Science, 2020, 6, e322.	2.7	5
22	Automated algorithm configuration and design. , 2020, , .		0
23	Automatic Off-Line Design of Robot Swarms: A Manifesto. Frontiers in Robotics and AI, 2019, 6, 59.	2.0	49
24	Archiver effects on the performance of state-of-the-art multi- and many-objective evolutionary algorithms. , 2019, , .		10
25	Automatic design of hybrid stochastic local search algorithms for permutation flowshop problems. European Journal of Operational Research, 2019, 276, 409-421.	3.5	32
26	Special issue on "Stochastic Local Search: Recent developments and trends― International Transactions in Operational Research, 2019, 26, 2580-2581.	1.8	0
27	The intelligent water drops algorithm: why it cannot be considered a novel algorithm. Swarm Intelligence, 2019, 13, 173-192.	1.3	30
28	The Hypervolume Indicator as a Performance Measure in Dynamic Optimization. Lecture Notes in Computer Science, 2019, , 319-331.	1.0	2
29	Revisiting simulated annealing: A component-based analysis. Computers and Operations Research, 2019, 104, 191-206.	2.4	81
30	Ant Colony Optimization: Overview and Recent Advances. Profiles in Operations Research, 2019, , 311-351.	0.3	283
31	Iterated Local Search: Framework and Applications. Profiles in Operations Research, 2019, , 129-168.	0.3	94
32	Automated Design of Metaheuristic Algorithms. Profiles in Operations Research, 2019, , 541-579.	0.3	35
33	A Large-Scale Experimental Evaluation of High-Performing Multi- and Many-Objective Evolutionary Algorithms. Evolutionary Computation, 2018, 26, 621-656.	2.3	24
34	Comparison of Acceptance Criteria in Randomized Local Searches. Lecture Notes in Computer Science, 2018, , 16-29.	1.0	3
35	Why the Intelligent Water Drops Cannot Be Considered as a Novel Algorithm. Lecture Notes in Computer Science, 2018, , 302-314.	1.0	11
36	Ant Colony Optimization: A Component-Wise Overview. , 2018, , 371-407.		14

3

Thomas Stützle

#	Article	IF	CITATIONS
37	Automatic Configuration of GCC Using Irace. Lecture Notes in Computer Science, 2018, , 202-216.	1.0	7
38	Effect of transformations of numerical parameters in automatic algorithm configuration. Optimization Letters, 2018, 12, 1741-1753.	0.9	3
39	Automated offline design of algorithms. , 2018, , .		0
40	Iterated Greedy. , 2018, , 547-577.		8
41	Iterated Local Search. , 2018, , 579-605.		15
42	On the empirical scaling of running time for finding optimal solutions to the TSP. Journal of Heuristics, 2018, 24, 879-898.	1.1	6
43	Iterated Greedy. , 2018, , 1-31.		Ο
44	Studying Solutions of the p-Median Problem for the Location of Public Bike Stations. Lecture Notes in Computer Science, 2018, , 198-208.	1.0	1
45	An Empirical Assessment of the Properties of Inverted Generational Distance on Multi- and Many-Objective Optimization. Lecture Notes in Computer Science, 2017, , 31-45.	1.0	26
46	ABC-X: a generalized, automatically configurable artificial bee colony framework. Swarm Intelligence, 2017, 11, 1-38.	1.3	33
47	Exploring variable neighborhood search for automatic algorithm configuration. Electronic Notes in Discrete Mathematics, 2017, 58, 167-174.	0.4	7
48	An iterated greedy algorithm with optimization of partial solutions for the makespan permutation flowshop problem. Computers and Operations Research, 2017, 81, 160-166.	2.4	80
49	Hybrid Simulated Annealing for the Bi-objective Quadratic Assignment Problem. Lecture Notes in Computer Science, 2017, , 462-472.	1.0	0
50	Special issue on "Metaheuristics― International Transactions in Operational Research, 2017, 24, 1587-1588.	1.8	0
51	Artificial bee colony framework to non-convex economic dispatch problem with valve point effects. , 2017, , .		4
52	Automated offline design of algorithms. , 2017, , .		0
53	ANTS 2016 special issue: Editorial. Swarm Intelligence, 2017, 11, 181-183.	1.3	0
54	Tuning of a stigmergy-based traffic light controller as a dynamic optimization problem. , 2017, , .		2

#	Article	IF	Citations
55	Analysis of the population-based ant colony optimization algorithm for the TSP and the QAP. , 2017, , .		15
56	Three L-SHADE based algorithms on mixed-variables optimization problems. , 2017, , .		0
57	Speeding up local search for the insert neighborhood in the weighted tardiness permutation flowshop problem. Optimization Letters, 2017, 11, 1283-1292.	0.9	6
58	Evaluating random forest models for irace. , 2017, , .		6
59	Configuring irace using surrogate configuration benchmarks. , 2017, , .		9
60	Network planning in smart grids via a local search heuristic for spanning forest problems. , 2017, , .		7
61	Iterated Local Search. , 2017, , 1-27.		3
62	An Experimental Study of Adaptive Capping in irace. Lecture Notes in Computer Science, 2017, , 235-250.	1.0	18
63	A unified framework for routing problems with a fixed fleet size. International Journal of Metaheuristics, 2017, 6, 160.	0.1	0
64	IAM 2016 Chairs' Welcome & Organization. , 2016, , .		0
65	Configuring a Stigmergy-based Traffic Light Controller. , 2016, , .		0
66	Self-adaptive search equation-based artificial bee colony algorithm on the CEC 2014 benchmark functions. , 2016, , .		5
67	The Impact of Automated Algorithm Configuration on the Scaling Behaviour of State-of-the-Art Inexact TSP Solvers. Lecture Notes in Computer Science, 2016, , 157-172.	1.0	6
68	Exploration of Metaheuristics through Automatic Algorithm Configuration Techniques and Algorithmic Frameworks. , 2016, , .		2
69	Special issue on "Matheuristics― International Transactions in Operational Research, 2016, 23, 1231-1232.	1.8	Ο
70	The irace package: Iterated racing for automatic algorithm configuration. Operations Research Perspectives, 2016, 3, 43-58.	1.2	918
71	Automatic (Offline) Configuration of Algorithms. , 2016, , .		1
72	A destroy and repair algorithm for the Bike sharing Rebalancing Problem. Computers and Operations Research, 2016, 71, 149-162.	2.4	118

#	Article	IF	CITATIONS
73	Automatic Component-Wise Design of Multiobjective Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation, 2016, 20, 403-417.	7.5	77
74	Ant Colony Optimization: A Component-Wise Overview. , 2016, , 1-37.		19
75	Stochastic Local Search Algorithms: An Overview. , 2015, , 1085-1105.		13
76	Ant colony optimization on a limited budget of evaluations. Swarm Intelligence, 2015, 9, 103-124.	1.3	18
77	Comparing Decomposition-Based and Automatically Component-Wise Designed Multi-Objective Evolutionary Algorithms. Lecture Notes in Computer Science, 2015, , 396-410.	1.0	9
78	A configurable generalized artificial bee colony algorithm with local search strategies. , 2015, , .		10
79	Estimation-based metaheuristics for the single vehicle routing problem with stochastic demands and customers. Computational Optimization and Applications, 2015, 61, 463-487.	0.9	23
80	On the empirical time complexity of finding optimal solutions vs proving optimality for Euclidean TSP instances. Optimization Letters, 2015, 9, 1247-1254.	0.9	8
81	Anytime Pareto local search. European Journal of Operational Research, 2015, 243, 369-385.	3.5	57
82	ANTS 2014 special issue: Editorial. Swarm Intelligence, 2015, 9, 71-73.	1.3	1
83	On the Empirical Scaling Behaviour of State-of-the-art Local Search Algorithms for the Euclidean TSP. , 2015, , .		14
84	Automatic (Offline) Configuration of Algorithms. , 2015, , .		8
85	Performance evaluation of automatically tuned continuous optimizers on different benchmark sets. Applied Soft Computing Journal, 2015, 27, 490-503.	4.1	44
86	To DE or Not to DE? Multi-objective Differential Evolution Revisited from a Component-Wise Perspective. Lecture Notes in Computer Science, 2015, , 48-63.	1.0	4
87	A Note on Bound Constraints Handling for the IEEE CEC'05 Benchmark Function Suite. Evolutionary Computation, 2014, 22, 351-359.	2.3	13
88	Automatic (offline) configuration of algorithms. , 2014, , .		0
89	A template for designing single-solution hybrid metaheuristics. , 2014, , .		3
90	Algorithm Comparison by Automatically Configurable Stochastic Local Search Frameworks: A Case Study Using Flow-Shop Scheduling Problems. Lecture Notes in Computer Science, 2014, , 30-44.	1.0	0

#	Article	IF	CITATIONS
91	An analysis of parameter adaptation in reactive tabu search. International Transactions in Operational Research, 2014, 21, 127-152.	1.8	9
92	On the sensitivity of reactive tabu search to its meta-parameters. Soft Computing, 2014, 18, 2177-2190.	2.1	4
93	Automatically improving the anytime behaviour of optimisation algorithms. European Journal of Operational Research, 2014, 235, 569-582.	3.5	59
94	A unified ant colony optimization algorithm for continuous optimization. European Journal of Operational Research, 2014, 234, 597-609.	3.5	110
95	Tabu search vs. simulated annealing as a function of the size of quadratic assignment problem instances. Computers and Operations Research, 2014, 43, 286-291.	2.4	43
96	Hybrid algorithms for the twin–screw extrusion configuration problem. Applied Soft Computing Journal, 2014, 23, 298-307.	4.1	6
97	Ant Colony Optimization for Mixed-Variable Optimization Problems. IEEE Transactions on Evolutionary Computation, 2014, 18, 503-518.	7.5	203
98	Grammar-based generation of stochastic local search heuristics through automatic algorithm configuration tools. Computers and Operations Research, 2014, 51, 190-199.	2.4	43
99	On the empirical scaling of run-time for finding optimal solutions to the travelling salesman problem. European Journal of Operational Research, 2014, 238, 87-94.	3.5	38
100	Deconstructing Multi-objective Evolutionary Algorithms: An Iterative Analysis on the Permutation Flow-Shop Problem. Lecture Notes in Computer Science, 2014, , 157-172.	1.0	8
101	AClib: A Benchmark Library for Algorithm Configuration. Lecture Notes in Computer Science, 2014, , 36-40.	1.0	30
102	Ant Colony Optimization on a Budget of 1000. Lecture Notes in Computer Science, 2014, , 50-61.	1.0	6
103	Automatic Design of Evolutionary Algorithms for Multi-Objective Combinatorial Optimization. Lecture Notes in Computer Science, 2014, , 508-517.	1.0	19
104	An Analysis of Parameters of irace. Lecture Notes in Computer Science, 2014, , 37-48.	1.0	5
105	Computational results for an automatically tuned CMA-ES with increasing population size on the CEC'05 benchmark set. Soft Computing, 2013, 17, 1031-1046.	2.1	31
106	ANTS 2012 special issue. Swarm Intelligence, 2013, 7, 79-81.	1.3	0
107	Swarmanoid: A Novel Concept for the Study of Heterogeneous Robotic Swarms. IEEE Robotics and Automation Magazine, 2013, 20, 60-71.	2.2	254
108	Combining Two Search Paradigms for Multi-objective Optimization: Two-Phase and Pareto Local Search. Studies in Computational Intelligence, 2013, , 97-117.	0.7	15

#	Article	IF	CITATIONS
109	Artificial bee colonies for continuous optimization: Experimental analysis and improvements. Swarm Intelligence, 2013, 7, 327-356.	1.3	42
110	Evolutionary medical image registration using automatic parameter tuning. , 2013, , .		10
111	Benchmark results for a simple hybrid algorithm on the CEC 2013 benchmark set for real-parameter optimization. , 2013, , .		28
112	Local search techniques for a routing-packing problem. Computers and Industrial Engineering, 2013, 66, 1138-1149.	3.4	46
113	Testing the impact of parameter tuning on a variant of IPOP-CMA-ES with a bounded maximum population size on the noiseless BBOB testbed. , 2013, , .		3
114	Automatic (offline) configuration of algorithms. , 2013, , .		3
115	Bounding the population size of IPOP-CMA-ES on the noiseless BBOB testbed. , 2013, , .		8
116	An analysis of post-selection in automatic configuration. , 2013, , .		13
117	Expensive optimization scenario. , 2013, , .		4
118	Automatically Improving the Anytime Behaviour of Multiobjective Evolutionary Algorithms. Lecture Notes in Computer Science, 2013, , 825-840.	1.0	20
119	Automatic Design of Hybrid Stochastic Local Search Algorithms. Lecture Notes in Computer Science, 2013, , 144-158.	1.0	27
120	From Grammars to Parameters: Automatic Iterated Greedy Design for the Permutation Flow-Shop Problem with Weighted Tardiness. Lecture Notes in Computer Science, 2013, , 321-334.	1.0	14
121	An Analysis of Local Search for the Bi-objective Bidimensional Knapsack Problem. Lecture Notes in Computer Science, 2013, , 85-96.	1.0	1
122	Multi-objective ant colony optimization for the twin-screw configuration problem. Engineering Optimization, 2012, 44, 351-371.	1.5	21
123	An ACO algorithm benchmarked on the BBOB noiseless function testbed. , 2012, , .		6
124	Improving Performance via Population Growth and Local Search: The Case of the Artificial Bee Colony Algorithm. Lecture Notes in Computer Science, 2012, , 85-96.	1.0	17
125	MORE: Mixed Optimization for Reverse Engineering—An Application to Modeling Biological Networks Response via Sparse Systems of Nonlinear Differential Equations. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9, 1459-1471.	1.9	6
126	An experimental analysis of design choices of multi-objective ant colony optimization algorithms. Swarm Intelligence, 2012, 6, 207-232.	1.3	37

#	Article	IF	CITATIONS
127	The Automatic Design of Multiobjective Ant Colony Optimization Algorithms. IEEE Transactions on Evolutionary Computation, 2012, 16, 861-875.	7.5	164
128	A critical analysis of parameter adaptation in ant colony optimization. Swarm Intelligence, 2012, 6, 23-48.	1.3	36
129	Continuous optimization algorithms for tuning real and integer parameters of swarm intelligence algorithms. Swarm Intelligence, 2012, 6, 49-75.	1.3	56
130	Large neighbourhood search algorithms for the founder sequence reconstruction problem. Computers and Operations Research, 2012, 39, 213-224.	2.4	8
131	Pareto Local Search Algorithms for Anytime Bi-objective Optimization. Lecture Notes in Computer Science, 2012, , 206-217.	1.0	9
132	Automatic Generation of Multi-objective ACO Algorithms for the Bi-objective Knapsack. Lecture Notes in Computer Science, 2012, , 37-48.	1.0	6
133	On the Anytime Behavior of IPOP-CMA-ES. Lecture Notes in Computer Science, 2012, , 357-366.	1.0	6
134	A Non-adaptive Stochastic Local Search Algorithm for the CHeSC 2011 Competition. Lecture Notes in Computer Science, 2012, , 101-114.	1.0	2
135	Incremental Social Learning in Particle Swarms. IEEE Transactions on Systems, Man, and Cybernetics, 2011, 41, 368-384.	5.5	109
136	Engineering an efficient two-phase local search algorithm for the co-rotating twin-screw extruder configuration problem. International Transactions in Operational Research, 2011, 18, 271-291.	1.8	5
137	Accelerating Molecular Docking Calculations Using Graphics Processing Units. Journal of Chemical Information and Modeling, 2011, 51, 865-876.	2.5	31
138	An incremental particle swarm for large-scale continuous optimization problems: an example of tuning-in-the-loop (re)design of optimization algorithms. Soft Computing, 2011, 15, 2233-2255.	2.1	66
139	Improving the anytime behavior of two-phase local search. Annals of Mathematics and Artificial Intelligence, 2011, 61, 125-154.	0.9	32
140	ANTS 2010 special issue. Swarm Intelligence, 2011, 5, 143-147.	1.3	2
141	A hybrid TP+PLS algorithm for bi-objective flow-shop scheduling problems. Computers and Operations Research, 2011, 38, 1219-1236.	2.4	83
142	Automatic configuration of state-of-the-art multi-objective optimizers using the TP+PLS framework. , 2011, , .		16
143	An incremental ant colony algorithm with local search for continuous optimization. , 2011, , .		49
144	An experimental study of preference model integration into multi-objective optimization heuristics. , 2011, , .		9

#	Article	IF	CITATIONS
145	High performing stochastic local search algorithms for the QAP and their performance in dependence to the instance structure and size. , 2011, , .		0
146	Parameter Adaptation in Ant Colony Optimization. , 2011, , 191-215.		64
147	Tuning parameters across mixed dimensional instances. , 2011, , .		8
148	Off-line and On-line Tuning: A Study on Operator Selection for a Memetic Algorithm Applied to the QAP. Lecture Notes in Computer Science, 2011, , 203-214.	1.0	7
149	A Bi-objective Optimization Model to Eliciting Decision Maker's Preferences for the PROMETHEE II Method. Lecture Notes in Computer Science, 2011, , 56-66.	1.0	7
150	Special issue on learning and intelligent optimization. Annals of Mathematics and Artificial Intelligence, 2010, 60, 1-2.	0.9	1
151	Shifting representation search for hybrid flexible flowline problems. European Journal of Operational Research, 2010, 207, 1086-1095.	3.5	92
152	Estimation-based metaheuristics for the probabilistic traveling salesman problem. Computers and Operations Research, 2010, 37, 1939-1951.	2.4	32
153	An analysis of communication policies for homogeneous multi-colony ACO algorithms. Information Sciences, 2010, 180, 2390-2404.	4.0	70
154	A multi-objective ant colony optimization method applied to switch engine scheduling in railroad yards. Pesquisa Operacional, 2010, 30, 486-514.	0.1	8
155	Modern Continuous Optimization Algorithms for Tuning Real and Integer Algorithm Parameters. Lecture Notes in Computer Science, 2010, , 203-214.	1.0	5
156	Iterated Local Search: Framework and Applications. Profiles in Operations Research, 2010, , 363-397.	0.3	246
157	Pre-scheduled and adaptive parameter variation in MAX-MIN Ant System. , 2010, , .		10
158	An Analysis of Heuristics for Vertex Colouring. Lecture Notes in Computer Science, 2010, , 326-337.	1.0	8
159	Graphical tools for the analysis of bi-objective optimization algorithms. , 2010, , .		5
160	The impact of design choices of multiobjective antcolony optimization algorithms on performance. , 2010, , .		17
161	Ant Colony Optimization: Overview and Recent Advances. Profiles in Operations Research, 2010, , 227-263.	0.3	259
162	pharmACOphore: Multiple Flexible Ligand Alignment Based on Ant Colony Optimization. Journal of Chemical Information and Modeling, 2010, 50, 1669-1681.	2.5	39

#	Article	IF	CITATIONS
163	An Analysis of Algorithmic Components for Multiobjective Ant Colony Optimization: A Case Study on the Biobjective TSP. Lecture Notes in Computer Science, 2010, , 134-145.	1.0	11
164	Matheuristics. Annals of Information Systems, 2010, , .	0.5	94
165	Incremental Social Learning Applied to a Decentralized Decision-Making Mechanism: Collective Learning Made Faster. , 2010, , .		3
166	F-Race and Iterated F-Race: An Overview. , 2010, , 311-336.		207
167	Exploratory Analysis of Stochastic Local Search Algorithms in Biobjective Optimization. , 2010, , 209-222.		80
168	MADS/F-Race: Mesh Adaptive Direct Search Meets F-Race. Lecture Notes in Computer Science, 2010, , 41-50.	1.0	4
169	Off-line vs. On-line Tuning: A Study on \$mathcal{MAXMIN}\$ Ant System for the TSP. Lecture Notes in Computer Science, 2010, , 239-250.	1.0	8
170	Automatic Configuration of Multi-Objective ACO Algorithms. Lecture Notes in Computer Science, 2010, , 95-106.	1.0	28
171	On the Difficulty of Inferring Gene Regulatory Networks: A Study of the Fitness Landscape Generated by Relative Squared Error. Lecture Notes in Computer Science, 2010, , 74-85.	1.0	1
172	Heterogeneous particle swarm optimizers. , 2009, , .		38
173	Usage of Exact Algorithms to Enhance Stochastic Local Search Algorithms. Annals of Information Systems, 2009, , 103-134.	0.5	7
174	Frankenstein's PSO: A Composite Particle Swarm Optimization Algorithm. IEEE Transactions on Evolutionary Computation, 2009, 13, 1120-1132.	7.5	297
175	Design and analysis of stochastic local search for the multiobjective traveling salesman problem. Computers and Operations Research, 2009, 36, 2619-2631.	2.4	43
176	Adaptive sample size and importance sampling in estimation-based local search for the probabilistic traveling salesman problem. European Journal of Operational Research, 2009, 199, 98-110.	3.5	29
177	Special issue on ant colony optimization. Swarm Intelligence, 2009, 3, 1-2.	1.3	17
178	Estimation-based ant colony optimization and local search for the probabilistic traveling salesman problem. Swarm Intelligence, 2009, 3, 223-242.	1.3	53
179	Clusters of Non-dominated Solutions in Multiobjective Combinatorial Optimization: An Experimental Analysis. Lecture Notes in Economics and Mathematical Systems, 2009, , 69-77.	0.3	21
180	Empirical Scoring Functions for Advanced Proteinâ^'Ligand Docking with PLANTS. Journal of Chemical Information and Modeling, 2009, 49, 84-96.	2.5	1,033

#	Article	IF	CITATIONS
181	Effective Hybrid Stochastic Local Search Algorithms for Biobjective Permutation Flowshop Scheduling. Lecture Notes in Computer Science, 2009, , 100-114.	1.0	10
182	Hierarchical Iterated Local Search for the Quadratic Assignment Problem. Lecture Notes in Computer Science, 2009, , 115-129.	1.0	13
183	The quadratic three-dimensional assignment problem: Exact and approximate solution methods. European Journal of Operational Research, 2008, 184, 416-428.	3.5	35
184	An Iterated Greedy heuristic for the sequence dependent setup times flowshop problem with makespan and weighted tardiness objectives. European Journal of Operational Research, 2008, 187, 1143-1159.	3.5	332
185	Iterated Greedy Algorithms for a Real-World Cyclic Train Scheduling Problem. Lecture Notes in Computer Science, 2008, , 102-116.	1.0	10
186	Convergence behavior of the fully informed particle swarm optimization algorithm. , 2008, , .		24
187	Towards incremental social learning in optimization and multiagent systems. , 2008, , .		19
188	Estimation-Based Local Search for Stochastic Combinatorial Optimization Using Delta Evaluations: A Case Study on the Probabilistic Traveling Salesman Problem. INFORMS Journal on Computing, 2008, 20, 644-658.	1.0	37
189	Very Large-Scale Neighborhood Search: Overview and Case Studies on Coloring Problems. Studies in Computational Intelligence, 2008, , 117-150.	0.7	11
190	Reactive Stochastic Local Search Algorithms for the Genomic Median Problem. Lecture Notes in Computer Science, 2008, , 266-276.	1.0	16
191	Incremental Particle Swarm-Guided Local Search for Continuous Optimization. Lecture Notes in Computer Science, 2008, , 72-86.	1.0	13
192	A review of metrics on permutations for search landscape analysis. Computers and Operations Research, 2007, 34, 3143-3153.	2.4	132
193	Stochastic Local Search Algorithms for Graph Set T-colouring and Frequency Assignment. Constraints, 2007, 12, 371-403.	0.4	24
194	On local optima in multiobjective combinatorial optimization problems. Annals of Operations Research, 2007, 156, 83-97.	2.6	73
195	An ant colony optimization approach to flexible protein–ligand docking. Swarm Intelligence, 2007, 1, 115-134.	1.3	187
196	A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. European Journal of Operational Research, 2007, 177, 2033-2049.	3.5	888
197	Improvement Strategies for the F-Race Algorithm: Sampling Design and Iterative Refinement. , 2007, , 108-122.		114
198	Using Experimental Design to Analyze Stochastic Local Search Algorithms for Multiobjective		4

Using Experimental Design to Problems. , 2007, , 325-344.

#	Article	IF	CITATIONS
199	Colour Reassignment in Tabu Search for the Graph Set T-Colouring Problem. Lecture Notes in Computer Science, 2006, , 162-177.	1.0	1
200	Ant Colony Optimization. IEEE Computational Intelligence Magazine, 2006, 1, 28-39.	3.4	906
201	Iterated local search for the quadratic assignment problem. European Journal of Operational Research, 2006, 174, 1519-1539.	3.5	242
202	A study of stochastic local search algorithms for the biobjective QAP with correlated flow matrices. European Journal of Operational Research, 2006, 169, 943-959.	3.5	83
203	Hybrid Population-Based Algorithms for the Bi-Objective Quadratic Assignment Problem. Mathematical Modelling and Algorithms, 2006, 5, 111-137.	0.5	61
204	Ant colony optimization. IEEE Computational Intelligence Magazine, 2006, 1, 28-39.	3.4	3,284
205	PLANTS: Application of Ant Colony Optimization to Structure-Based Drug Design. Lecture Notes in Computer Science, 2006, , 247-258.	1.0	161
206	Applications of Racing Algorithms: An Industrial Perspective. Lecture Notes in Computer Science, 2006, , 271-283.	1.0	17
207	A Comparison of Particle Swarm Optimization Algorithms Based on Run-Length Distributions. Lecture Notes in Computer Science, 2006, , 1-12.	1.0	18
208	Incremental Local Search in Ant Colony Optimization: Why It Fails for the Quadratic Assignment Problem. Lecture Notes in Computer Science, 2006, , 156-166.	1.0	6
209	Iterated Ants: An Experimental Study for the Quadratic Assignment Problem. Lecture Notes in Computer Science, 2006, , 179-190.	1.0	23
210	Hybrid Particle Swarm Optimization: An Examination of the Influence of Iterative Improvement Algorithms on Performance. Lecture Notes in Computer Science, 2006, , 436-443.	1.0	17
211	ACO Applied to Switch Engine Scheduling in a Railroad Yard. Lecture Notes in Computer Science, 2006, , 502-503.	1.0	Ο
212	The linear ordering problem: Instances, search space analysis and algorithms. Mathematical Modelling and Algorithms, 2005, 3, 367-402.	0.5	28
213	New Benchmark Instances for the QAP and the Experimental Analysis of Algorithms. Lecture Notes in Computer Science, 2004, , 199-209.	1.0	24
214	A Comparison Between ACO Algorithms for the Set Covering Problem. Lecture Notes in Computer Science, 2004, , 1-12.	1.0	69
215	The Linear Ordering Problem: Instances, Search Space Analysis and Algorithms. Mathematical Modelling and Algorithms, 2004, 3, 367-402.	0.5	69
216	Ant Colony Optimization and Swarm Intelligence. Lecture Notes in Computer Science, 2004, , .	1.0	1,528

#	Article	IF	CITATIONS
217	On the Design of ACO for the Biobjective Quadratic Assignment Problem. Lecture Notes in Computer Science, 2004, , 214-225.	1.0	36
218	Pareto Local Optimum Sets in the Biobjective Traveling Salesman Problem: An Experimental Study. Lecture Notes in Economics and Mathematical Systems, 2004, , 177-199.	0.3	121
219	Ant Colony Optimization. , 2004, , .		2,088
220	Search Space Features Underlying the Performance of Stochastic Local Search Algorithms for MAX-SAT. Lecture Notes in Computer Science, 2004, , 51-60.	1.0	10
221	Iterated Robust Tabu Search for MAX-SAT. Lecture Notes in Computer Science, 2003, , 129-144.	1.0	63
222	Iterated Local Search. , 2003, , 320-353.		461
223	The Ant Colony Optimization Metaheuristic: Algorithms, Applications, and Advances. Profiles in Operations Research, 2003, , 250-285.	0.3	383
224	A Two-Phase Local Search for the Biobjective Traveling Salesman Problem. Lecture Notes in Computer Science, 2003, , 479-493.	1.0	75
225	A Comparison of the Performance of Different Metaheuristics on the Timetabling Problem. Lecture Notes in Computer Science, 2003, , 329-351.	1.0	71
226	Combinations of Local Search and Exact Algorithms. Lecture Notes in Computer Science, 2003, , 211-223.	1.0	53
227	Search Space Analysis of the Linear Ordering Problem. Lecture Notes in Computer Science, 2003, , 322-333.	1.0	19
228	Stochastic Local Search for Multiprocessor Scheduling for Minimum Total Tardiness. Lecture Notes in Computer Science, 2003, , 96-113.	1.0	0
229	A short convergence proof for a class of ant colony optimization algorithms. IEEE Transactions on Evolutionary Computation, 2002, 6, 358-365.	7.5	345
230	Guest editorial: special section on ant colony optimization. IEEE Transactions on Evolutionary Computation, 2002, 6, 317-319.	7.5	116
231	An Experimental Investigation of Iterated Local Search for Coloring Graphs. Lecture Notes in Computer Science, 2002, , 122-131.	1.0	22
232	Analysing the Run-Time Behaviour of Iterated Local Search for the Travelling Salesman Problem. Operations Research/ Computer Science Interfaces Series, 2002, , 589-611.	0.3	6
233	– Ant System. Future Generation Computer Systems, 2000, 16, 889-914.	4.9	2,353
234	Local Search Algorithms for SAT: An Empirical Evaluation. , 2000, 24, 421-481.		116

#	Article	IF	CITATIONS
235	Ant Colony Optimization for the Total Weighted Tardiness Problem. Lecture Notes in Computer Science, 2000, , 611-620.	1.0	119
236	A Comparison of Nature Inspired Heuristics on the Traveling Salesman Problem. Lecture Notes in Computer Science, 2000, , 661-670.	1.0	16
237	Towards a characterisation of the behaviour of stochastic local search algorithms for SAT. Artificial Intelligence, 1999, 112, 213-232.	3.9	77
238	Systematic vs. Local Search for SAT. Lecture Notes in Computer Science, 1999, , 289-293.	1.0	11
239	The Max-Min ANT System and Local Search for Combinatorial Optimization Problems. , 1999, , 313-329.		52
240	Some Surprising Regularities in the Behaviour of Stochastic Local Search. Lecture Notes in Computer Science, 1998, , 470-470.	1.0	3
241	MAX-MIN Ant System and local search for the traveling salesman problem. , 0, , .		440