Joseph R Podojil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5180894/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo. Nature, 2015, 522, 216-220.	27.8	336
2	Cutting Edge: Anti-CD25 Monoclonal Antibody Injection Results in the Functional Inactivation, Not Depletion, of CD4+CD25+ T Regulatory Cells. Journal of Immunology, 2006, 176, 3301-3305.	0.8	296
3	Antigen-specific tolerance strategies for the prevention and treatment of autoimmune disease. Nature Reviews Immunology, 2007, 7, 665-677.	22.7	252
4	Oligodendrocyte death results in immune-mediated CNS demyelination. Nature Neuroscience, 2016, 19, 65-74.	14.8	145
5	Molecular mechanisms of Tâ€cell receptor and costimulatory molecule ligation/blockade in autoimmune disease therapy. Immunological Reviews, 2009, 229, 337-355.	6.0	115
6	Potential targeting of B7â€H4 for the treatment of cancer. Immunological Reviews, 2017, 276, 40-51.	6.0	103
7	A genetic mouse model of adult-onset, pervasive central nervous system demyelination with robust remyelination. Brain, 2010, 133, 3017-3029.	7.6	101
8	APOBEC-mediated mutagenesis in urothelial carcinoma is associated with improved survival, mutations in DNA damage response genes, and immune response. Oncotarget, 2018, 9, 4537-4548.	1.8	92
9	TAK-101 Nanoparticles Induce Gluten-Specific Tolerance in Celiac Disease: A Randomized, Double-Blind, Placebo-Controlled Study. Gastroenterology, 2021, 161, 66-80.e8.	1.3	88
10	Pharmaceutical integrated stress response enhancement protects oligodendrocytes and provides a potential multiple sclerosis therapeutic. Nature Communications, 2015, 6, 6532.	12.8	87
11	Tolerogenic Ag-PLG nanoparticles induce tregs to suppress activated diabetogenic CD4 and CD8 T cells. Journal of Autoimmunity, 2018, 89, 112-124.	6.5	87
12	Gliadin Nanoparticles Induce Immune Tolerance to Gliadin in Mouse Models of Celiac Disease. Gastroenterology, 2020, 158, 1667-1681.e12.	1.3	87
13	Peripherally derived T regulatory and γδT cells have opposing roles in the pathogenesis of intractable pediatric epilepsy. Journal of Experimental Medicine, 2018, 215, 1169-1186.	8.5	80
14	Selective Regulation of Mature IgG1 Transcription by CD86 and β2-Adrenergic Receptor Stimulation. Journal of Immunology, 2003, 170, 5143-5151.	0.8	74
15	Overcoming challenges in treating autoimmuntity: Development of tolerogenic immune-modifying nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 18, 282-291.	3.3	67
16	CD86 and β2-Adrenergic Receptor Signaling Pathways, Respectively, Increase Oct-2 and OCA-B Expression and Binding to the 3′-IgH Enhancer in B Cells. Journal of Biological Chemistry, 2004, 279, 23394-23404.	3.4	62
17	Virus expanded regulatory T cells control disease severity in the Theiler's virus mouse model of MS. Journal of Autoimmunity, 2011, 36, 142-154.	6.5	59
18	Sephin1, which prolongs the integrated stress response, is a promising therapeutic for multiple sclerosis. Brain, 2019, 142, 344-361.	7.6	55

Joseph R Podojil

#	Article	IF	CITATIONS
19	Advanced Age Increases Immunosuppression in the Brain and Decreases Immunotherapeutic Efficacy in Subjects with Glioblastoma. Clinical Cancer Research, 2020, 26, 5232-5245.	7.0	52
20	B7-H4lg inhibits mouse and human T-cell function and treats EAE via IL-10/Treg-dependent mechanisms. Journal of Autoimmunity, 2013, 44, 71-81.	6.5	49
21	Adaptive immunity in mice lacking the β2-adrenergic receptor. Brain, Behavior, and Immunity, 2003, 17, 55-67.	4.1	46
22	Pre-clinical and Clinical Implications of "Inside-Out―vs. "Outside-In―Paradigms in Multiple Sclerosis Etiopathogenesis. Frontiers in Cellular Neuroscience, 2020, 14, 599717.	3.7	46
23	TGF-β–Induced Myelin Peptide-Specific Regulatory T Cells Mediate Antigen-Specific Suppression of Induction of Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2010, 184, 6629-6636.	0.8	42
24	Targeting the B7 Family of Co-Stimulatory Molecules. BioDrugs, 2013, 27, 1-13.	4.6	42
25	Intrinsic and Induced Regulation of the Age-Associated Onset of Spontaneous Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2008, 181, 4638-4647.	0.8	41
26	ER Chaperone BiP/GRP78 Is Required for Myelinating Cell Survival and Provides Protection during Experimental Autoimmune Encephalomyelitis. Journal of Neuroscience, 2015, 35, 15921-15933.	3.6	41
27	Pattern of CXCR7 Gene Expression in Mouse Brain Under Normal and Inflammatory Conditions. Journal of NeuroImmune Pharmacology, 2016, 11, 26-35.	4.1	39
28	CD86 and \hat{l}^22 -adrenergic receptor stimulation regulate B-cell activity cooperatively. Trends in Immunology, 2005, 26, 180-185.	6.8	35
29	B7-H4 Modulates Regulatory CD4+ T Cell Induction and Function via Ligation of a Semaphorin 3a/Plexin A4/Neuropilin-1 Complex. Journal of Immunology, 2018, 201, 897-907.	0.8	34
30	CD28 regulates glucocorticoid-induced TNF receptor family-related gene expression on CD4+ T cells via IL-2-dependent mechanisms. Cellular Immunology, 2005, 235, 56-64.	3.0	27
31	ILDR2 Is a Novel B7-like Protein That Negatively Regulates T Cell Responses. Journal of Immunology, 2018, 200, 2025-2037.	0.8	26
32	CD4+ T Cell Expressed CD80 Regulates Central Nervous System Effector Function and Survival during Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2006, 177, 2948-2958.	0.8	25
33	Antibody targeting of B7-H4 enhances the immune response in urothelial carcinoma. Oncolmmunology, 2020, 9, 1744897.	4.6	25
34	Cutting Edge: CD99 Is a Novel Therapeutic Target for Control of T Cell–Mediated Central Nervous System Autoimmune Disease. Journal of Immunology, 2016, 196, 1443-1448.	0.8	20
35	ILDR2-Fc Is a Novel Regulator of Immune Homeostasis and Inducer of Antigen-Specific Immune Tolerance. Journal of Immunology, 2018, 200, 2013-2024.	0.8	17
36	Therapeutic Blockade of T- Cell Antigen Receptor Signal Transduction and Costimulation in Autoimmune Disease. Advances in Experimental Medicine and Biology, 2008, 640, 234-251.	1.6	11

Joseph R Podojil

#	Article	lF	CITATIONS
37	Integrin/Chemokine Receptor Interactions in the Pathogenesis of Experimental Autoimmune Encephalomyelitis. Journal of NeuroImmune Pharmacology, 2014, 9, 438-445.	4.1	10
38	Cross-Linking of CD80 on CD4+ T Cells Activates a Calcium-Dependent Signaling Pathway. Journal of Immunology, 2009, 182, 766-773.	0.8	9
39	Masked Delivery of Allergen in Nanoparticles Safely Attenuates Anaphylactic Response in Murine Models of Peanut Allergy. Frontiers in Allergy, 2022, 3, 829605.	2.8	9
40	Tolerogenic Immune-Modifying Nanoparticles Encapsulating Multiple Recombinant Pancreatic β Cell Proteins Prevent Onset and Progression of Type 1 Diabetes in Nonobese Diabetic Mice. Journal of Immunology, 2022, 209, 465-475.	0.8	7
41	Repurposing the cardiac glycoside digoxin to stimulate myelin regeneration in <scp>chemicallyâ€induced</scp> and <scp>immuneâ€mediated</scp> mouse models of multiple sclerosis. Glia, 2022, 70, 1950-1970.	4.9	7
42	ONP-302 Nanoparticles Inhibit Tumor Growth By Altering Tumor-Associated Macrophages And Cancer-Associated Fibroblasts. Journal of Cancer, 2022, 13, 1933-1944.	2.5	6
43	Combination treatment of mice with crx-153 (nortriptyline and desloratadine) decreases the severity of experimental autoimmune encephalomyelitis. Cellular Immunology, 2011, 270, 237-250.	3.0	4
44	Tolerance Induced by Antigen-Loaded PLG Nanoparticles Affects the Phenotype and Trafficking of Transgenic CD4+ and CD8+ T Cells. Cells, 2021, 10, 3445.	4.1	4
45	Immunopathological mechanisms in multiple sclerosis. Drug Discovery Today Disease Mechanisms, 2006, 3, 177-184.	0.8	2
46	630 TAK-101 (TIMP-GLIA) PREVENTS GLUTEN CHALLENGE INDUCED IMMUNE ACTIVATION IN ADULTS WITH CELIAC DISEASE. Gastroenterology, 2020, 158, S-135.	1.3	2
47	Nanoparticles reduce monocytes within the lungs to improve outcomes after influenza virus infection in aged mice. JCI Insight, 2022, 7, .	5.0	1
48	OR.103. Induced PLP Peptide-specific Regulatory T Cells Appear to Suppress Experimental Autoimmune Encephalomyelitis in an Antigen-specific Manner. Clinical Immunology, 2009, 131, S42.	3.2	0
49	Identification of novel immune checkpoints as targets for cancer immunotherapy. , 2013, 1, .		Ο
50	MP44-05 OVEREXPRESSION OF IMMUNE CO-STIMULATORY MOLECULE B7-H4 IS ASSOCIATED WITH POOR SURVIVAL IN BLADDER UROTHELIAL CARCINOMA. Journal of Urology, 2017, 197, .	0.4	0
51	Abstract B291: Identification of novel immune checkpoints and their implementation as mAb targets for cancer immunotherapy , 2013, , .		0
52	Abstract 2405: B7H4 as a T cell inhibitory regulator in bladder cancer. , 2019, , .		0
53	Methodology for in vitro Assessment of Human T Cell Activation and Blockade. Bio-protocol, 2020, 10, e3644.	0.4	0
54	Abstract 2405: B7H4 as a T cell inhibitory regulator in bladder cancer. , 2019, , .		0