List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/518087/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A topâ€down systems biology view of microbiomeâ€mammalian metabolic interactions in a mouse model. Molecular Systems Biology, 2007, 3, 112.	7.2	420
2	Statistical Heterospectroscopy, an Approach to the Integrated Analysis of NMR and UPLC-MS Data Sets: Application in Metabonomic Toxicology Studies. Analytical Chemistry, 2006, 78, 363-371.	6.5	330
3	Structural Changes of Region 1-16 of the Alzheimer Disease Amyloid β-Peptide upon Zinc Binding and in Vitro Aging. Journal of Biological Chemistry, 2006, 281, 2151-2161.	3.4	284
4	lsolation and Structural Characterization of Capistruin, a Lasso Peptide Predicted from the Genome Sequence of Burkholderia thailandensis E264. Journal of the American Chemical Society, 2008, 130, 11446-11454.	13.7	220
5	Isolation and Characterization of Environmental Bacteria Capable of Extracellular Biosorption of Mercury. Applied and Environmental Microbiology, 2012, 78, 1097-1106.	3.1	195
6	Structure of an antibacterial peptide ATP-binding cassette transporter in a novel outward occluded state. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9145-9150.	7.1	178
7	Two Enzymes Catalyze the Maturation of a Lasso Peptide in Escherichia coli. Chemistry and Biology, 2007, 14, 793-803.	6.0	130
8	Zinc Binding to Alzheimer's Aβ(1–16) Peptide Results in Stable Soluble Complex. Biochemical and Biophysical Research Communications, 2001, 285, 959-964.	2.1	129
9	Experimental and Analytical Variation in Human Urine in1H NMR Spectroscopy-Based Metabolic Phenotyping Studies. Analytical Chemistry, 2007, 79, 5204-5211.	6.5	110
10	Dissecting the Maturation Steps of the Lasso Peptide Microcin J25 in vitro. ChemBioChem, 2012, 13, 1046-1052.	2.6	106
11	Structural basis for hijacking siderophore receptors by antimicrobial lasso peptides. Nature Chemical Biology, 2014, 10, 340-342.	8.0	78
12	Characterization of Sviceucin from <i>Streptomyces</i> Provides Insight into Enzyme Exchangeability and Disulfide Bond Formation in Lasso Peptides. ACS Chemical Biology, 2015, 10, 2641-2649.	3.4	73
13	Zinc binding properties of the amyloid fragment Aβ(1–16) studied by electrospray-ionization mass spectrometry. International Journal of Mass Spectrometry, 2003, 228, 999-1016.	1.5	67
14	Synthesis, antimicrobial activity and conformational analysis of the class IIa bacteriocin pediocin PA-1 and analogs thereof. Scientific Reports, 2018, 8, 9029.	3.3	65
15	Structural basis for antibacterial peptide selfâ€immunity by the bacterial ABC transporter McjD. EMBO Journal, 2017, 36, 3062-3079.	7.8	64
16	Sequence Determinants Governing the Topology and Biological Activity of a Lasso Peptide, Microcin J25. ChemBioChem, 2012, 13, 371-380.	2.6	62
17	Deconjugated Bile Salts Produced by Extracellular Bile-Salt Hydrolase-Like Activities from the Probiotic Lactobacillus johnsonii La1 Inhibit Giardia duodenalis In vitro Growth. Frontiers in Microbiology, 2016, 7, 1453.	3.5	62
18	Sponging up metals: Bacteria associated with the marine sponge Spongia officinalis. Marine Environmental Research, 2015, 104, 20-30.	2.5	56

#	Article	IF	CITATIONS
19	Combined proteomic and metabonomic studies in three genetic forms of the renal Fanconi syndrome. American Journal of Physiology - Renal Physiology, 2007, 293, F456-F467.	2.7	55
20	Statistical Search Space Reduction and Two-Dimensional Data Display Approaches for UPLCâ^'MS in Biomarker Discovery and Pathway Analysis. Analytical Chemistry, 2006, 78, 4398-4408.	6.5	52
21	Preservation of Archaeal Surface Layer Structure During Mineralization. Scientific Reports, 2016, 6, 26152.	3.3	52
22	Bacteriocins to Thwart Bacterial Resistance in Gram Negative Bacteria. Frontiers in Microbiology, 2020, 11, 586433.	3.5	49
23	Ion Mobility–Mass Spectrometry of Lasso Peptides: Signature of a Rotaxane Topology. Analytical Chemistry, 2015, 87, 1166-1172.	6.5	48
24	Fate and Biological Activity of the Antimicrobial Lasso Peptide Microcin J25 Under Gastrointestinal Tract Conditions. Frontiers in Microbiology, 2018, 9, 1764.	3.5	47
25	Topoisomer Differentiation of Molecular Knots by FTICR MS: Lessons from Class II Lasso Peptides. Journal of the American Society for Mass Spectrometry, 2011, 22, 467-479.	2.8	38
26	Insight into Siderophore-Carrying Peptide Biosynthesis: Enterobactin Is a Precursor for Microcin E492 Posttranslational Modification. Antimicrobial Agents and Chemotherapy, 2007, 51, 3546-3553.	3.2	36
27	Thiazoleâ€Based γâ€Building Blocks as Reverseâ€Turn Mimetic to Design a Gramicidinâ€S Analogue: Conformational and Biological Evaluation. Chemistry - A European Journal, 2014, 20, 6713-6720.	3.3	36
28	Collagen Extraction and Stable Isotope Analysis of Small Vertebrate Bones: A Comparative Approach. Radiocarbon, 2017, 59, 679-694.	1.8	35
29	Identification of Lasso Peptide Topologies Using Native Nanoelectrospray Ionization-Trapped Ion Mobility Spectrometry–Mass Spectrometry. Analytical Chemistry, 2018, 90, 5139-5146.	6.5	34
30	Structural and Functional Basis for Lipid Synergy on the Activity of the Antibacterial Peptide ABC Transporter McjD. Journal of Biological Chemistry, 2016, 291, 21656-21668.	3.4	33
31	Structural Basis for Natural Product Selection and Export by Bacterial ABC Transporters. ACS Chemical Biology, 2018, 13, 1598-1609.	3.4	33
32	An orthogonal system for heterologous expression of actinobacterial lasso peptides in Streptomyces hosts. Scientific Reports, 2018, 8, 8232.	3.3	30
33	Zinc binding agonist effect on the recognition of the β-amyloid (4–10) epitope by anti-β-amyloid antibodies. Biochemical and Biophysical Research Communications, 2004, 321, 324-328.	2.1	27
34	General rules of fragmentation evidencing lasso structures in CID and ETD. Analyst, The, 2018, 143, 1157-1170.	3.5	27
35	Radiocarbon dating minute amounts of bone (3–60 mg) with ECHoMICADAS. Scientific Reports, 2017, 7, 7141.	3.3	24
36	Phenomic and genomic approaches to studying the inhibition of multiresistant <scp><i>Salmonella enterica</i></scp> by microcin <scp>J25</scp> . Environmental Microbiology, 2020, 22, 2907-2920.	3.8	21

#	Article	IF	CITATIONS
37	Determination of Peptide Topology through Time-Resolved Double-Resonance under Electron Capture Dissociation Conditions. Analytical Chemistry, 2012, 84, 4957-4964.	6.5	20
38	Pyrolysis comprehensive gas chromatography and mass spectrometry: A new tool to assess the purity of ancient collagen prior to radiocarbon dating. Analytica Chimica Acta, 2018, 1041, 131-145.	5.4	20
39	Structural signatures of the class III lasso peptide BI-32169 and the branched-cyclic topoisomers using trapped ion mobility spectrometry–mass spectrometry and tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 2019, 411, 6287-6296.	3.7	20
40	l ² ,Î ³ -diamino acids as building blocks for new analogues of Gramicidin S: Synthesis and biological activity. European Journal of Medicinal Chemistry, 2018, 149, 122-128.	5.5	19
41	Signatures of Mechanically Interlocked Topology of Lasso Peptides by Ion Mobility–Mass Spectrometry: Lessons from a Collection of Representatives. Journal of the American Society for Mass Spectrometry, 2017, 28, 315-322.	2.8	17
42	Palaeoproteomics gives new insight into early southern African pastoralism. Scientific Reports, 2020, 10, 14427.	3.3	17
43	IRMPD Spectroscopy: Evidence of Hydrogen Bonding in the Gas Phase Conformations of Lasso Peptides and their Branched-Cyclic Topoisomers. Journal of Physical Chemistry A, 2016, 120, 3810-3816.	2.5	15
44	Gastrointestinal Stability and Cytotoxicity of Bacteriocins From Gram-Positive and Gram-Negative Bacteria: A Comparative in vitro Study. Frontiers in Microbiology, 2021, 12, 780355.	3.5	15
45	Identification of degraded bone and tooth splinters from arid environments using palaeoproteomics. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 511, 472-482.	2.3	14
46	Time resolved transient circular dichroism spectroscopy using synchrotron natural polarization. Structural Dynamics, 2019, 6, 054307.	2.3	14
47	Binding Specificity of Native Odorant-Binding Protein Isoforms Is Driven by Phosphorylation and O-N-Acetylglucosaminylation in the Pig Sus scrofa. Frontiers in Endocrinology, 2019, 9, 816.	3.5	14
48	Microcin J25 Exhibits Inhibitory Activity Against Salmonella Newport in Continuous Fermentation Model Mimicking Swine Colonic Conditions. Frontiers in Microbiology, 2020, 11, 988.	3.5	14
49	Animal fibre use in the Keriya valley (Xinjiang, China) during the Bronze and Iron Ages: A proteomic approach. Journal of Archaeological Science, 2019, 110, 104996.	2.4	13
50	Metal ions induced secondary structure rearrangements: mechanically interlocked lasso <i>vs.</i> unthreaded branched-cyclic topoisomers. Analyst, The, 2018, 143, 2323-2333.	3.5	12
51	Evidence of <i>Cis</i> / <i>Trans</i> -Isomerization at Pro7/Pro16 in the Lasso Peptide Microcin J25. Journal of the American Society for Mass Spectrometry, 2019, 30, 1038-1045.	2.8	12
52	Gasâ€phase conformations of capistruin – comparison of lasso, branched yclic and linear topologies. Rapid Communications in Mass Spectrometry, 2015, 29, 1411-1419.	1.5	11
53	Furanoterpene Diversity and Variability in the Marine Sponge Spongia officinalis, from Untargeted LC–MS/MS Metabolomic Profiling to Furanolactam Derivatives. Metabolites, 2017, 7, 27.	2.9	11
54	Evaluating the Potential and Synergetic Effects of Microcins against Multidrug-Resistant <i>Enterobacteriaceae</i> . Microbiology Spectrum, 2022, 10, e0275221.	3.0	9

#	Article	IF	CITATIONS
55	Novel Mechanism for Surface Layer Shedding and Regenerating in Bacteria Exposed to Metal-Contaminated Conditions. Frontiers in Microbiology, 2018, 9, 3210.	3.5	8
56	Toward a versatile protocol for radiocarbon and proteomics analysis of ancient collagen. Journal of Archaeological Science, 2019, 101, 1-10.	2.4	8
57	Untangling the fibre ball: Proteomic characterization of South American camelid hair fibres by untargeted multivariate analysis and molecular networking. Journal of Proteomics, 2021, 231, 104040.	2.4	8
58	Collision induced dissociation-based characterization of nucleotide peptides: Fragmentation patterns of microcin C7–C51, an antimicrobial peptide produced by <i>Escherichia coli</i> . Journal of the American Society for Mass Spectrometry, 2008, 19, 1187-1198.	2.8	7
59	Unprecedented Occurrence of Isoaspartic Acid in a Plant Cyclopeptide. Organic Letters, 2012, 14, 576-579.	4.6	7
60	Post-Translational Modification and folding of A Lasso-Type Gene-Encoded Antimicrobial Peptide Require Two Enzymes only in Escherichia coli. Advances in Experimental Medicine and Biology, 2009, 611, 35-36.	1.6	7
61	Initial Molecular Recognition Steps of McjA Precursor during Microcin J25 Lasso Peptide Maturation. ChemBioChem, 2016, 17, 1851-1858.	2.6	6
62	Complete Genome Sequences of Four <i>Microbacterium</i> Strains Isolated from Metal- and Radionuclide-Rich Soils. Microbiology Resource Announcements, 2019, 8, .	0.6	3
63	Prompt and Slow Electronâ€Detachmentâ€Dissociation/Electronâ€Photodetachmentâ€Dissociation of a 21â€Mer Peptide. Chemistry - A European Journal, 2013, 19, 350-357.	3.3	2
64	Electron detachment/photodetachment dissociation of lasso peptides. International Journal of Mass Spectrometry, 2015, 390, 91-100.	1.5	2
65	Biosynthesis, Regulation and Export of Lasso Peptides. SpringerBriefs in Microbiology, 2015, , 81-95.	0.1	1
66	Biological Activities of Lasso Peptides and Structure–Activity Relationships. SpringerBriefs in Microbiology, 2015, , 37-79.	0.1	1
67	Biosynthesis of Siderophore-Peptides, A Class of Potent Antimicrobial Peptides from Enterobacteria, Requires Two Precursors. Advances in Experimental Medicine and Biology, 2009, 611, 33-34.	1.6	0
68	Introduction: A Review of Lasso Peptide Research. SpringerBriefs in Microbiology, 2015, , 1-6.	0.1	0
69	Lasso Peptide Bioengineering and Bioprospecting. SpringerBriefs in Microbiology, 2015, , 97-103.	0.1	0
70	From the Producer Microorganisms to the Lasso Scaffold. SpringerBriefs in Microbiology, 2015, , 7-35.	0.1	0
71	Synthesis and antimicrobial activity of the bacteriocin pediocin PA-1 and analogs thereof. , 0, , .		Ο