Marc Cadotte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5179922/publications.pdf

Version: 2024-02-01

203 papers 18,813 citations

59 h-index 127 g-index

226 all docs 226 docs citations

times ranked

226

19128 citing authors

#	Article	IF	CITATIONS
1	Prioritization and thresholds for managing biological invasions in urban ecosystems. Urban Ecosystems, 2022, 25, 253-271.	1.1	6
2	Multiâ€trophic metacommunity interactions mediate asynchrony and stability in fluctuating environments. Ecological Monographs, 2022, 92, e1484.	2.4	12
3	Nutrient enrichment increases invertebrate herbivory and pathogen damage in grasslands. Journal of Ecology, 2022, 110, 327-339.	1.9	25
4	Functionally distinct tree species support long-term productivity in extreme environments. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20211694.	1.2	6
5	Biodiversity responses to restoration across the Brazilian Atlantic Forest. Science of the Total Environment, 2022, 821, 153403.	3.9	12
6	A replicated study on the response of spider assemblages to regional and local processes. Ecological Monographs, 2022, 92, .	2.4	6
7	Coâ€designed ecological research for more effective management and conservation. Ecological Solutions and Evidence, 2022, 3, .	0.8	2
8	Phylogenetic and functional clustering illustrate the roles of adaptive radiation and dispersal filtering in jointly shaping lateâ€Quaternary mammal assemblages on oceanic islands. Ecology Letters, 2022, 25, 1250-1262.	3.0	16
9	Prioritizing terrestrial invasive alien plant species for management in urban ecosystems. Journal of Applied Ecology, 2022, 59, 872-883.	1.9	6
10	Multitrophic diversity and biotic associations influence subalpine forest ecosystem multifunctionality. Ecology, 2022, 103, e3745.	1.5	18
11	Drought soil legacy alters drivers of plant diversity-productivity relationships in oldfield systems. Science Advances, 2022, 8, eabn3368.	4.7	21
12	The latitudinal gradient in plant community assembly processes: AÂmetaâ€analysis. Ecology Letters, 2022, 25, 1711-1724.	3.0	20
13	Partitioning the temporal changes in abundanceâ€based beta diversity into loss and gain components. Methods in Ecology and Evolution, 2022, 13, 2042-2048.	2.2	5
14	Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time. Ecology, 2021, 102, e03218.	1.5	62
15	Mycorrhizal type influences plant density dependence and species richness across 15 temperate forests. Ecology, 2021, 102, e03259.	1.5	20
16	Training future generations to deliver evidenceâ€based conservation and ecosystem management. Ecological Solutions and Evidence, 2021, 2, e12032.	0.8	23
17	The list of vascular plants for the city of Toronto. Ecological Solutions and Evidence, 2021, 2, e12036.	0.8	4
18	Host plant environmental filtering drives foliar fungal community assembly in symptomatic leaves. Oecologia, 2021, 195, 737-749.	0.9	4

#	Article	IF	Citations
19	Individualâ€level leaf trait variation and correlation across biological and spatial scales. Ecology and Evolution, 2021, 11, 5344-5354.	0.8	7
20	Temporal changes in spatial variation: partitioning the extinction and colonisation components of beta diversity. Ecology Letters, 2021, 24, 1063-1072.	3.0	49
21	Effectively integrating experiments into conservation practice. Ecological Solutions and Evidence, 2021, 2, e12069.	0.8	11
22	Trait hierarchies are stronger than trait dissimilarities in structuring spatial coâ€occurrence patterns of common tree species in a subtropical forest. Ecology and Evolution, 2021, 11, 7366-7377.	0.8	5
23	The dimensionality and structure of species trait spaces. Ecology Letters, 2021, 24, 1988-2009.	3.0	63
24	Scaleâ€dependent shifts in functional and phylogenetic structure of Mediterranean island plant communities over two centuries. Journal of Ecology, 2021, 109, 3513.	1.9	5
25	Invasion theory as a management tool for increasing native biodiversity in urban ecosystems. Journal of Applied Ecology, 2021, 58, 2394-2403.	1.9	4
26	Elevational patterns of bird functional and phylogenetic structure in the central Himalaya. Ecography, 2021, 44, 1403-1417.	2.1	27
27	Invasion drives plant diversity loss through competition and ecosystem modification. Journal of Ecology, 2021, 109, 3587-3601.	1.9	33
28	Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	40
29	Phylogenetic Diversity of Urban Floras in the Central Urals. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	4
30	Temporal rarity is a better predictor of local extinction risk than spatial rarity. Ecology, 2021, 102, e03504.	1.5	14
31	Habitat loss-biodiversity relationships are influenced by assembly processes and the spatial configuration of area loss. Forest Ecology and Management, 2021, 496, 119452.	1.4	5
32	National-scale changes in crop diversity through the Anthropocene. Scientific Reports, 2021, 11, 20361.	1.6	4
33	Opposing community assembly patterns for dominant and nondominant plant species in herbaceous ecosystems globally. Ecology and Evolution, 2021, 11, 17744-17761.	0.8	8
34	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	4.2	1,038
35	Urbanization and plant invasion alter the structure of litter microarthropod communities. Journal of Animal Ecology, 2020, 89, 2496-2507.	1.3	14
36	Global impacts of fertilization and herbivore removal on soil net nitrogen mineralization are modulated by local climate and soil properties. Global Change Biology, 2020, 26, 7173-7185.	4.2	25

#	Article	IF	CITATIONS
37	Restorationâ€oriented forest management affects community assembly patterns of deadwoodâ€dependent organisms. Journal of Applied Ecology, 2020, 57, 2429-2440.	1.9	17
38	Ensuring tests of conservation interventions build on existing literature. Conservation Biology, 2020, 34, 781-783.	2.4	14
39	General destabilizing effects of eutrophication on grassland productivity at multiple spatial scales. Nature Communications, 2020, 11, 5375.	5.8	75
40	An experimental application of Hypena opulenta as a biocontrol agent for the invasive vine Vincetoxicum rossicum. Ecological Solutions and Evidence, 2020, 1, e12022.	0.8	9
41	Niche Breadth: Causes and Consequences for Ecology, Evolution, and Conservation. Quarterly Review of Biology, 2020, 95, 179-214.	0.0	114
42	Species responses to changing precipitation depend on trait plasticity rather than trait means and intraspecific variation. Functional Ecology, 2020, 34, 2622-2633.	1.7	20
43	Invasive dominance and resident diversity: unpacking the impact of plant invasion on biodiversity and ecosystem function. Ecological Monographs, 2020, 90, e01425.	2.4	27
44	Nutrients cause grassland biomass to outpace herbivory. Nature Communications, 2020, 11, 6036.	5.8	35
45	Tree mycorrhizal type mediates the strength of negative density dependence in temperate forests. Journal of Ecology, 2020, 108, 2601-2610.	1.9	25
46	The mechanisms generating community phylogenetic patterns change with spatial scale. Oecologia, 2020, 193, 655-664.	0.9	9
47	Primary determinants of communities in deadwood vary among taxa but are regionally consistent. Oikos, 2020, 129, 1579-1588.	1.2	63
48	Making the applied research that practitioners need and want accessible. Ecological Solutions and Evidence, 2020, 1, e12000.	0.8	10
49	Richness, phylogenetic diversity, and abundance all have positive effects on invader performance in an arid ecosystem. Ecosphere, 2020, 11, e03045.	1.0	16
50	Neighborhood interactions on seedling survival were greatly altered following an extreme winter storm. Forest Ecology and Management, 2020, 461, 117940.	1.4	11
51	Plant diversity enhances the reclamation of degraded lands by stimulating plant–soil feedbacks. Journal of Applied Ecology, 2020, 57, 1258-1270.	1.9	22
52	Functional and phylogenetic diversity explain different components of diversity effects on biomass production. Oikos, 2020, 129, 1185-1195.	1.2	32
53	Frag SAD: A database of diversity and species abundance distributions from habitat fragments. Ecology, 2019, 100, e02861.	1.5	8
54	Do traits and phylogeny support congruent community diversity patterns and assembly inferences?. Journal of Ecology, 2019, 107, 2065-2077.	1.9	79

#	Article	IF	CITATIONS
55	Nitrogen alters effects of disturbance on annual grassland community diversity: Implications for restoration. Journal of Ecology, 2019, 107, 2054-2064.	1.9	10
56	Plants alter their vertical root distribution rather than biomass allocation in response to changing precipitation. Ecology, 2019, 100, e02828.	1.5	86
57	Global evidence of positive biodiversity effects on spatial ecosystem stability in natural grasslands. Nature Communications, 2019, 10, 3207.	5.8	59
58	Forest community assembly is driven by different strataâ€dependent mechanisms along an elevational gradient. Journal of Biogeography, 2019, 46, 2174-2187.	1.4	32
59	Lost in trait space: species-poor communities are inflexible in properties that drive ecosystem functioning. Advances in Ecological Research, 2019, , 91-131.	1.4	14
60	Greater than the sum of the parts: how the species composition in different forest strata influence ecosystem function. Ecology Letters, 2019, 22, 1449-1461.	3.0	51
61	Plant invasion alters trait composition and diversity across habitats. Ecology and Evolution, 2019, 9, 6199-6210.	0.8	55
62	Fungi associated with beetles dispersing from dead wood – Let's take the beetle bus!. Fungal Ecology, 2019, 39, 100-108.	0.7	41
63	Experimental dominant plant removal results in contrasting assembly for dominant and nonâ€dominant plants. Ecology Letters, 2019, 22, 1233-1242.	3.0	12
64	Assessing the utility of conserving evolutionary history. Biological Reviews, 2019, 94, 1740-1760.	4.7	65
65	Conserving evolutionary history does not result in greater diversity over geological time scales. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182896.	1.2	16
66	Applied ecologists in a landscape of fear. Journal of Applied Ecology, 2019, 56, 1034-1039.	1.9	12
67	Nonâ€random loss of phylogenetically distinct rare species degrades phylogenetic diversity in semiâ€natural grasslands. Journal of Applied Ecology, 2019, 56, 1419-1428.	1.9	13
68	Regional and global shifts in crop diversity through the Anthropocene. PLoS ONE, 2019, 14, e0209788.	1.1	53
69	Reply to: "Global conservation of phylogenetic diversity captures more than just functional diversity― Nature Communications, 2019, 10, 858.	5.8	13
70	Individualâ€based models of community assembly: Neighbourhood competition drives phylogenetic community structure. Journal of Ecology, 2019, 107, 735-746.	1.9	22
71	Intraspecific trait variation improves the detection of deterministic community assembly processes in early successional forests, but not in late successional forests. Journal of Plant Ecology, 2019, 12, 593-602.	1.2	8
72	Rare and phylogenetically distinct plant species exhibit less diverse rootâ€associated pathogen communities. Journal of Ecology, 2019, 107, 1226-1237.	1.9	11

#	Article	IF	Citations
73	Assessing the uneven global distribution of readership, submissions and publications in applied ecology: Obvious problems without obvious solutions. Journal of Applied Ecology, 2019, 56, 4-9.	1.9	70
74	Warming affects foliar fungal diseases more than precipitation in a Tibetan alpine meadow. New Phytologist, 2019, 221, 1574-1584.	3.5	42
75	Ecological engagement determines ecosystem service valuation: A case study from Rouge National Urban Park in Toronto, Canada. Ecosystem Services, 2018, 30, 86-97.	2.3	27
76	Preadaptation and Naturalization of Nonnative Species: Darwin's Two Fundamental Insights into Species Invasion. Annual Review of Plant Biology, 2018, 69, 661-684.	8.6	90
77	Herbivores safeguard plant diversity by reducing variability in dominance. Journal of Ecology, 2018, 106, 101-112.	1.9	40
78	Planting accelerates restoration of tropical forest but assembly mechanisms appear insensitive to initial composition. Journal of Applied Ecology, 2018, 55, 986-996.	1.9	22
79	On the extinction of the singleâ€authored paper: The causes and consequences of increasingly collaborative applied ecological research. Journal of Applied Ecology, 2018, 55, 1-4.	1.9	34
80	Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nature Ecology and Evolution, 2018, 2, 50-56.	3.4	172
81	Biodiversity assessments: Origin matters. PLoS Biology, 2018, 16, e2006686.	2.6	52
82	Manipulating plant phylogenetic diversity for green roof ecosystem service delivery. Evolutionary Applications, 2018, 11, 2014-2024.	1.5	21
83	Protect Third Pole's fragile ecosystem. Science, 2018, 362, 1368-1368.	6.0	76
84	Biodiversity explains maximum variation in productivity under experimental warming, nitrogen addition, and grazing in mountain grasslands. Ecology and Evolution, 2018, 8, 10094-10112.	0.8	16
85	On the relationship between phylogenetic diversity and trait diversity. Ecology, 2018, 99, 1473-1479.	1.5	136
86	The importance of accounting for imperfect detection when estimating functional and phylogenetic community structure. Ecology, 2018, 99, 2103-2112.	1.5	38
87	Spatial heterogeneity in species composition constrains plant community responses to herbivory and fertilisation. Ecology Letters, 2018, 21, 1364-1371.	3.0	38
88	Prioritizing phylogenetic diversity captures functional diversity unreliably. Nature Communications, 2018, 9, 2888.	5.8	144
89	The ecology and economics of restoration: when, what, where, and how to restore ecosystems. Ecology and Society, 2018, 23, .	1.0	58
90	Difficult decisions: Strategies for conservation prioritization when taxonomic, phylogenetic and functional diversity are not spatially congruent. Biological Conservation, 2018, 225, 128-133.	1.9	82

#	Article	IF	Citations
91	The Necessity of Multitrophic Approaches in Community Ecology. Trends in Ecology and Evolution, 2018, 33, 754-764.	4.2	105
92	Testing Darwin's transoceanic dispersal hypothesis for the inland nettle family (Urticaceae). Ecology Letters, 2018, 21, 1515-1529.	3.0	40
93	Predicting loss of evolutionary history: Where are we?. Biological Reviews, 2017, 92, 271-291.	4.7	67
94	Integrating trait and phylogenetic distances to assess scaleâ€dependent community assembly processes. Ecography, 2017, 40, 742-752.	2.1	38
95	Solving environmental problems in the Anthropocene: the need to bring novel theoretical advances into the applied ecology fold. Journal of Applied Ecology, 2017, 54, 1-6.	1.9	30
96	Functional and phylogenetic structure of island bird communities. Journal of Animal Ecology, 2017, 86, 532-542.	1.3	73
97	Why phylogenies do not always predict ecological differences. Ecological Monographs, 2017, 87, 535-551.	2.4	148
98	Biodiversity and ecosystem function: making sense of numerous species interactions in multiâ€species communities. Ecology, 2017, 98, 1771-1778.	1.5	36
99	Functional traits explain ecosystem function through opposing mechanisms. Ecology Letters, 2017, 20, 989-996.	3.0	273
100	Functional Rarity: The Ecology of Outliers. Trends in Ecology and Evolution, 2017, 32, 356-367.	4.2	258
101	Should Environmental Filtering be Abandoned?. Trends in Ecology and Evolution, 2017, 32, 429-437.	4.2	509
102	Trait dimensionality and population choice alter estimates of phenotypic dissimilarity. Ecology and Evolution, 2017, 7, 2273-2285.	0.8	9
103	Non-native species in urban environments: patterns, processes, impacts and challenges. Biological Invasions, 2017, 19, 3461-3469.	1.2	190
104	A Common Toolbox to Understand, Monitor or Manage Rarity? A Response to Carmona et al Trends in Ecology and Evolution, 2017, 32, 891-893.	4.2	4
105	Explaining ecosystem multifunction with evolutionary models. Ecology, 2017, 98, 3175-3187.	1.5	14
106	Are urban systems beneficial, detrimental, or indifferent for biological invasion?. Biological Invasions, 2017, 19, 3489-3503.	1.2	117
107	Embracing the Nonindependence of the Environmental Filter: A Reply to Responses. Trends in Ecology and Evolution, 2017, 32, 886-887.	4.2	5
108	Honey bees are the dominant diurnal pollinator of native milkweed in a large urban park. Ecology and Evolution, 2017, 7, 8456-8462.	0.8	19

#	Article	IF	Citations
109	Out of the shadows: multiple nutrient limitations drive relationships among biomass, light and plant diversity. Functional Ecology, 2017, 31, 1839-1846.	1.7	55
110	From patches to richness: assessing the potential impact of landscape transformation on biodiversity. Ecosphere, 2017, 8, e02004.	1.0	13
111	A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biological Reviews, 2017, 92, 698-715.	4.7	570
112	Effect of Environmental Variation on Estimating the Bacterial Species Richness. Frontiers in Microbiology, 2017, 8, 690.	1.5	8
113	Conservation of Species- and Trait-Based Modeling Network Interactions in Extremely Acidic Microbial Community Assembly. Frontiers in Microbiology, 2017, 8, 1486.	1.5	10
114	Trait-Based Community Assembly along an Elevational Gradient in Subalpine Forests: Quantifying the Roles of Environmental Factors in Inter- and Intraspecific Variability. PLoS ONE, 2016, 11, e0155749.	1.1	41
115	Contrasting patterns of lichen functional diversity and species richness across an elevation gradient. Ecography, 2016, 39, 689-698.	2.1	93
116	Phylogenetic conservatism and climate factors shape flowering phenology in alpine meadows. Oecologia, 2016, 182, 419-428.	0.9	20
117	Phylogenetic ecology and the greening of cities. Journal of Applied Ecology, 2016, 53, 1470-1476.	1.9	29
118	Changes in the dominant assembly mechanism drive species loss caused by declining resources. Ecology Letters, 2016, 19, 163-170.	3.0	60
119	Climate modifies response of non-native and native species richness to nutrient enrichment. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150273.	1.8	34
120	Transforming ecosystems: When, where, and how to restore contaminated sites. Integrated Environmental Assessment and Management, 2016, 12, 273-283.	1.6	24
121	Addition of multiple limiting resources reduces grassland diversity. Nature, 2016, 537, 93-96.	13.7	355
122	Trait variation and functional diversity maintenance of understory herbaceous species coexisting along an elevational gradient in Yulong Mountain, Southwest China. Plant Diversity, 2016, 38, 303-311.	1.8	30
123	Deconstructing the relationships between phylogenetic diversity and ecology: a case study on ecosystem functioning. Ecology, 2016, 97, 2212-2222.	1.5	34
124	Convergence and divergence in a longâ€term oldâ€field succession: the importance of spatial scale and species abundance. Ecology Letters, 2016, 19, 1101-1109.	3.0	119
125	Achieving and communicating globally relevant applied ecological research. Journal of Applied Ecology, 2016, 53, 1-4.	1.9	3
126	Functional response of lignicolous fungal guilds to bark beetle deforestation. Ecological Indicators, 2016, 65, 149-160.	2.6	48

#	Article	IF	CITATIONS
127	The effects of phylogenetic relatedness on invasion success and impact: deconstructing Darwin's naturalisation conundrum. Ecology Letters, 2015, 18, 1285-1292.	3.0	100
128	Species colonisation, not competitive exclusion, drives community overdispersion over longâ€ŧerm succession. Ecology Letters, 2015, 18, 964-973.	3.0	103
129	Phylogenetic diversity and productivity: gauging interpretations from experiments that do not manipulate phylogenetic diversity. Functional Ecology, 2015, 29, 1603-1606.	1.7	31
130	Phylogenetic diversity–ecosystem function relationships are insensitive to phylogenetic edge lengths. Functional Ecology, 2015, 29, 718-723.	1.7	20
131	Predicting communities from functional traits. Trends in Ecology and Evolution, 2015, 30, 510-511.	4.2	138
132	<i>pez</i> : phylogenetics for the environmental sciences. Bioinformatics, 2015, 31, 2888-2890.	1.8	146
133	Phylogenetic turnover patterns consistent with niche conservatism in montane plant species. Journal of Ecology, 2015, 103, 742-749.	1.9	35
134	Phylogeny in the Service of Ecological Restoration. American Journal of Botany, 2015, 102, 647-648.	0.8	59
135	Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands. Nature Communications, 2015, 6, 7710.	5.8	143
136	Is successional research nearing its climax? New approaches for understanding dynamic communities. Functional Ecology, 2015, 29, 154-164.	1.7	183
137	Contrasting effects of phylogenetic relatedness on plant invader success in experimental grassland communities. Journal of Applied Ecology, 2015, 52, 89-99.	1.9	40
138	Management by proxy? The use of indices in applied ecology. Journal of Applied Ecology, 2015, 52, 1-6.	1.9	133
139	Explaining maximum variation in productivity requires phylogenetic diversity and single functional traits. Ecology, 2015, 96, 176-183.	1.5	56
140	Colonization Rates in a Metacommunity Altered by Competition. PLoS ONE, 2014, 9, e88344.	1.1	4
141	Nearâ€toâ€nature logging influences fungal community assembly processes in a temperate forest. Journal of Applied Ecology, 2014, 51, 939-948.	1.9	80
142	Including distantly related taxa can bias phylogenetic tests. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E536.	3.3	12
143	How hydroperiod and species richness affect the balance of resource flows across aquatic-terrestrial habitats. Aquatic Sciences, 2014, 76, 131-143.	0.6	38
144	Herbivores and nutrients control grassland plant diversity via light limitation. Nature, 2014, 508, 517-520.	13.7	669

#	Article	IF	Citations
145	The ecology of differences: assessing community assembly with trait and evolutionary distances. Ecology Letters, 2013, 16, 1234-1244.	3.0	304
146	Celebrating the golden jubilee of the <i>Journal of Applied Ecology</i> . Journal of Applied Ecology, 2013, 50, 1-3.	1.9	4
147	Unifying measures of biodiversity: understanding when richness and phylogenetic diversity should be congruent. Diversity and Distributions, 2013, 19, 845-854.	1.9	138
148	Fire variability, as well as frequency, can explain coexistence between seeder and resprouter life histories. Journal of Applied Ecology, 2013, 50, 594-602.	1.9	13
149	Experimental evidence that evolutionarily diverse assemblages result in higher productivity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8996-9000.	3.3	208
150	Diversity of plant evolutionary lineages promotes arthropod diversity. Ecology Letters, 2012, 15, 1308-1317.	3.0	108
151	Incorporating Geographical and Evolutionary Rarity into Conservation Prioritization. Conservation Biology, 2012, 26, 593-601.	2.4	60
152	Gauging the impact of meta-analysis on ecology. Evolutionary Ecology, 2012, 26, 1153-1167.	0.5	55
153	Phylogenetic diversity promotes ecosystem stability. Ecology, 2012, 93, S223.	1.5	372
154	Ensuring applied ecology has impact. Journal of Applied Ecology, 2012, 49, 1-5.	1.9	29
155	Phylogenetic diversity and the functioning of ecosystems. Ecology Letters, 2012, 15, 637-648.	3.0	432
156	Phylogenetically diverse grasslands are associated with pairwise interspecific processes that increase biomass. Ecology, 2011, 92, 1385-1392.	1.5	43
157	Quantifying Biodiversity: Does It Matter What We Measure?. , 2011, , 43-60.		18
158	Linking community and ecosystem dynamics through spatial ecology. Ecology Letters, 2011, 14, 313-323.	3.0	213
159	Beyond species: functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology, 2011, 48, 1079-1087.	1.9	1,545
160	The new diversity: management gains through insights into the functional diversity of communities. Journal of Applied Ecology, 2011, 48, 1067-1069.	1.9	62
161	Phylogenetic Patterns of Colonization and Extinction in Experimentally Assembled Plant Communities. PLoS ONE, 2011, 6, e19363.	1.1	30
162	Rarest of the rare: advances in combining evolutionary distinctiveness and scarcity to inform conservation at biogeographical scales. Diversity and Distributions, 2010, 16, 376-385.	1.9	191

#	Article	lF	Citations
163	Phylogenetic patterns differ for native and exotic plant communities across a richness gradient in Northern California. Diversity and Distributions, 2010, 16, 892-901.	1.9	56
164	Putting applied ecology into practice. Journal of Applied Ecology, 2010, 47, 1-4.	1.9	31
165	Phenology as a basis for management of exotic annual plants in desert invasions. Journal of Applied Ecology, 2010, 47, 1290-1299.	1.9	51
166	Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history. Ecology Letters, 2010, 13, 96-105.	3.0	340
167	Recasting spatial food web ecology as an ecosystem science. Nature Precedings, 2010, , .	0.1	0
168	Why plants lose their inhibitions in the Arctic: functional traits, phylogenetics and respiration in the light. Nature Precedings, 2010, , .	0.1	0
169	Using Phylogenetic, Functional and Trait Diversity to Understand Patterns of Plant Community Productivity. PLoS ONE, 2009, 4, e5695.	1.1	558
170	Editor's choice: Modelling disease–coral dynamics as a way to understand longâ€term coral reef persistence. Journal of Applied Ecology, 2009, 46, 733-733.	1.9	0
171	Editor's choice: predicting invader success requires integrating ecological and landâ€use patterns. Journal of Applied Ecology, 2009, 46, 1357-1357.	1.9	1
172	Plant genetics shapes inquiline community structure across spatial scales. Ecology Letters, 2009, 12, 285-292.	3.0	43
173	Phylogenetic relatedness and plant invader success across two spatial scales. Diversity and Distributions, 2009, 15, 481-488.	1.9	89
174	Effects of biodiversity on the functioning of ecosystems: a summary of 164 experimental manipulations of species richness. Ecology, 2009, 90, 854-854.	1.5	36
175	Editor's choice: Unintended trophic cascades from feral cat eradication. Journal of Applied Ecology, 2009, 46, 259-259.	1.9	4
176	CONSEQUENCES OF DOMINANCE: A REVIEW OF EVENNESS EFFECTS ON LOCAL AND REGIONAL ECOSYSTEM PROCESSES. Ecology, 2008, 89, 1510-1520.	1.5	720
177	Evolutionary history and the effect of biodiversity on plant productivity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17012-17017.	3.3	503
178	Impacts of plant diversity on biomass production increase through time because of species complementarity. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18123-18128.	3.3	1,175
179	Concurrent niche and neutral processes in the competition–colonization model of species coexistence. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2739-2744.	1.2	75
180	COMPETITIONâ€"COLONIZATION TRADE-OFFS AND DISTURBANCE EFFECTS AT MULTIPLE SCALES. Ecology, 2007, 88, 823-829.	1.5	157

#	Article	IF	Citations
181	The response of bacterial groups to changes in available iron in the Eastern subtropical Pacific Ocean. Journal of Experimental Marine Biology and Ecology, 2007, 348, 11-22.	0.7	17
182	Core and Satellite Species in Degraded Habitats: an Analysis Using Malagasy Tree Communities. Biodiversity and Conservation, 2007, 16, 2515-2529.	1.2	8
183	Evolutionary and ecological influences of plant invader success in the flora of Ontario. Ecoscience, 2006, 13, 388-395.	0.6	40
184	On Testing the Competitionâ€Colonization Tradeâ€Off in a Multispecies Assemblage. American Naturalist, 2006, 168, 704-709.	1.0	151
185	METACOMMUNITY INFLUENCES ON COMMUNITY RICHNESS AT MULTIPLE SPATIAL SCALES: A MICROCOSM EXPERIMENT. Ecology, 2006, 87, 1008-1016.	1.5	99
186	Dispersal and Species Diversity: A Metaâ€Analysis. American Naturalist, 2006, 167, 913-924.	1.0	252
187	Ecological Patterns and Biological Invasions: Using Regional Species Inventories in Macroecology. Biological Invasions, 2006, 8, 809-821.	1.2	129
188	The effects of resource enrichment, dispersal, and predation on local and metacommunity structure. Oecologia, 2006, 149, 150-157.	0.9	47
189	Darwin to Elton: early ecology and the problem of invasive species. , 2006, , 15-33.		17
190	Dispersal, spatial scale, and species diversity in a hierarchically structured experimental landscape. Ecology Letters, 2005, 8, 548-557.	3.0	156
191	Life-history correlates of plant invasiveness at regional and continental scales. Ecology Letters, 2005, 8, 1066-1074.	3.0	296
192	The ecology of biological invasions: past, present and future. , 2005, , 19-43.		33
193	Constructing Nature: Laboratory Models as Necessary Tools for Investigating Complex Ecological Communities. Advances in Ecological Research, 2005, , 333-353.	1.4	46
194	Ecological Niches: Linking Classical and Contemporary Approaches. Biodiversity and Conservation, 2004, 13, 1791-1793.	1.2	23
195	Complexity and Conservation: An Ecological Perspective. BioScience, 2002, 52, 460.	2.2	1
196	Ecological and taxonomic differences between rare and common plants of southwestern Ontario. Ecoscience, 2002, 9, 397-406.	0.6	30
197	Tree and shrub diversity and abundance in fragmented littoral forest of southeastern Madagascar. Biodiversity and Conservation, 2002, 11, 1417-1436.	1.2	33
198	Phylogenetic diversity and ecological features in the Egyptian flora. Biodiversity and Conservation, 2002, 11, 1809-1824.	1.2	17

#	Article	IF	CITATIONS
199	Ecological and taxonomic differences between native and introduced plants of southwestern Ontario. Ecoscience, 2001, 8, 230-238.	0.6	75
200	Mining in Madagascar and biodiversity loss: Are there options?. Biodiversity, 2000, 1, 2-8.	0.5	3
201	Quantifying the invasiveness of species. NeoBiota, 0, 21, 7-27.	1.0	63
202	Heterogeneity in patterns of survival of the invasive species Ipomoea carnea in urban habitats along the Egyptian Nile Delta. NeoBiota, 0, 33, 1-17.	1.0	8
203	The application of selected invasion frameworks to urban ecosystems. NeoBiota, 0, 62, 365-386.	1.0	21