
Kathryn Mary Wright

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5179129/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MacConkey broth purple provides an efficient MPN estimation method for Shigatoxigenic Escherichia coli. Journal of Microbiological Methods, 2021, 181, 106132.	1.6	4

2 The role of l-arabinose metabolism for Escherichia coli O157:H7 in edible plants. Microbiology (United) Tj ETQq0 0 QrgBT /Overlock 10 T

3	Escherichia coli O157:H7 F9 Fimbriae Recognize Plant Xyloglucan and Elicit a Response in Arabidopsis thaliana. International Journal of Molecular Sciences, 2020, 21, 9720.	4.1	3
4	Characterisation of barley landraces from Syria and Jordan for resistance to rhynchosporium and identification of diagnostic markers for Rrs1Rh4. Theoretical and Applied Genetics, 2020, 133, 1243-1264.	3.6	7
5	Mapping the H2 resistance effective against Globodera pallida pathotype Pa1 in tetraploid potato. Theoretical and Applied Genetics, 2019, 132, 1283-1294.	3.6	36
6	Quantification and colonisation dynamics of Escherichia coli O157:H7 inoculation of microgreens species and plant growth substrates. International Journal of Food Microbiology, 2018, 273, 1-10.	4.7	48
7	The Globodera pallida SPRYSEC Effector GpSPRY-414-2 That Suppresses Plant Defenses Targets a Regulatory Component of the Dynamic Microtubule Network. Frontiers in Plant Science, 2018, 9, 1019.	3.6	31
8	Resistance to Rhynchosporium commune in a collection of European spring barley germplasm. Theoretical and Applied Genetics, 2018, 131, 2513-2528.	3.6	17
9	Infection strategy of <i>Ramularia colloâ€cygni</i> and development of ramularia leaf spot on barley and alternative graminaceous hosts. Plant Pathology, 2017, 66, 45-55.	2.4	25
10	Differences in internalization and growth of <i><scp>E</scp>scherichia coli</i> O157:H7 within the apoplast of edible plants, spinach and lettuce, compared with the model species <i><scp>N</scp>icotiana benthamiana</i> . Microbial Biotechnology, 2017, 10, 555-569.	4.2	57
11	Probing Protein Targeting to Plasmodesmata Using Fluorescence Recovery After Photo-Bleaching. Methods in Molecular Biology, 2015, 1217, 259-274.	0.9	0
12	Genomic characterisation of the effector complement of the potato cyst nematode Globodera pallida. BMC Genomics, 2014, 15, 923.	2.8	81
13	<i>Potato virus Y</i> HCPro Localization at Distinct, Dynamically Related and Environment-Influenced Structures in the Cell Cytoplasm. Molecular Plant-Microbe Interactions, 2014, 27, 1331-1343.	2.6	17
14	Assessment of fluorescein-based fluorescent dyes for tracing <i>Neotyphodium</i> endophytes in planta. Mycologia, 2013, 105, 221-229.	1.9	12
15	Dynamic localization of two tobamovirus ORF6 proteins involves distinct organellar compartments. Journal of General Virology, 2013, 94, 230-240.	2.9	14
16	The Endophytic Lifestyle of <i>Escherichia coli</i> O157:H7: Quantification and Internal Localization in Roots. Phytopathology, 2013, 103, 333-340.	2.2	72
17	Raspberry leaf blotch virus, a putative new member of the genus Emaravirus, encodes a novel genomic RNA. Journal of General Virology, 2012, 93, 430-437.	2.9	85
18	The TGB1 Movement Protein of <i>Potato virus X</i> Reorganizes Actin and Endomembranes into the X-Body, a Viral Replication Factory Â. Plant Physiology, 2012, 158, 1359-1370.	4.8	115

#	Article	IF	CITATIONS
19	Potato tuber pectin structure is influenced by pectin methyl esterase activity and impacts on cooked potato texture. Journal of Experimental Botany, 2011, 62, 371-381.	4.8	39
20	Unusual Features of Pomoviral RNA Movement. Frontiers in Microbiology, 2011, 2, 259.	3.5	27
21	The N-Terminal Domain of PMTV TGB1 Movement Protein Is Required for Nucleolar Localization, Microtubule Association, and Long-Distance Movement. Molecular Plant-Microbe Interactions, 2010, 23, 1486-1497.	2.6	47
22	Plasmodesmal Targeting and Accumulation of TMV Movement Protein. Plant Signaling and Behavior, 2007, 2, 180-181.	2.4	7
23	Targeting of TMV Movement Protein to Plasmodesmata Requires the Actin/ER Network; Evidence From FRAP. Traffic, 2007, 8, 21-31.	2.7	133
24	Translocation of Tomato Bushy Stunt Virus P19 Protein into the Nucleus by ALY Proteins Compromises Its Silencing Suppressor Activity. Journal of Virology, 2006, 80, 9064-9072.	3.4	91
25	The ER Within Plasmodesmata. Plant Cell Monographs, 2006, , 279-308.	0.4	5
26	Characterisation and functional analysis of two barley caleosins expressed during barley caryopsis development. Planta, 2005, 221, 513-522.	3.2	27
27	Expression of GFP-fusions in Arabidopsis companion cells reveals non-specific protein trafficking into sieve elements and identifies a novel post-phloem domain in roots. Plant Journal, 2004, 41, 319-331.	5.7	244
28	Structural and Functional Vein Maturation in Developing Tobacco Leaves in Relation to AtSUC2 Promoter Activity. Plant Physiology, 2003, 131, 1555-1565.	4.8	67
29	Analysis of the N Gene Hypersensitive Response Induced by a Fluorescently Tagged Tobacco Mosaic Virus. Plant Physiology, 2000, 123, 1375-1386.	4.8	86
30	Metabolic inhibitors induce symplastic movement of solutes from the transport phloem of Arabidopsisroots. Journal of Experimental Botany, 1997, 48, 1807-1814.	4.8	66
31	The fluorescent probe HPTS as a phloem-mobile, symplastic tracer: an evaluation using confocal laser scanning microscopy. Journal of Experimental Botany, 1996, 47, 439-445.	4.8	69
32	Phloem mobility of fluorescent xenobiotics inArabidopsisin relation to their physicochemical properties. Journal of Experimental Botany, 1996, 47, 1779-1787.	4.8	44
33	Symplastic communication between primary and developing lateral roots ofArabidopsis thaliana. Journal of Experimental Botany, 1995, 46, 187-197.	4.8	82
34	Physicochemical properties alone do not predict the movement and compartmentation of fluorescent xenobiotics. Journal of Experimental Botany, 1994, 45, 35-44.	4.8	31
35	Observations on the accumulation of five xenobiotic chemicals in phloem versus parenchyma tissues of celery. Pest Management Science, 1994, 42, 17-24.	0.4	2
36	Hexose Accumulation and Turgor-Sensitive Starch Synthesis in Discs Derived from Source versus Sink Potato Tubers. Journal of Experimental Botany, 1990, 41, 1355-1360.	4.8	15

#	Article	IF	CITATIONS
37	Sucrose uptake and partitioning in discs derived from source versus sink potato tubers. Planta, 1989, 177, 237-244.	3.2	27
38	Influence of cell turgor on sucrose partitioning in potato tuber storage tissues. Planta, 1988, 175, 520-526.	3.2	58
39	Osmotic regulation of starch synthesis in potato tubers?. Planta, 1988, 174, 123-126.	3.2	52
40	Regulation of non-autotrophic carbon dioxide assimilation by ammonia in cultured cells of Acer pseudoplatanus L. Plant Science, 1988, 58, 151-158.	3.6	10