Klaus D Jöns

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5178983/publications.pdf

Version: 2024-02-01

136950 182427 3,030 54 32 51 h-index citations g-index papers 56 56 56 2510 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Quantum photonics with layered 2D materials. Nature Reviews Physics, 2022, 4, 219-236.	26.6	82
2	The potential and global outlook of integrated photonics for quantum technologies. Nature Reviews Physics, 2022, 4, 194-208.	26.6	151
3	Stimulated Generation of Indistinguishable Single Photons from a Quantum Ladder System. Physical Review Letters, 2022, 128, 093603.	7.8	20
4	Nonlinear down-conversion in a single quantum dot. Nature Communications, 2022, 13, 1387.	12.8	3
5	Scalable integration of quantum emitters into photonic integrated circuits. Materials for Quantum Technology, 2022, 2, 023002.	3.1	5
6	Gate-Switchable Arrays of Quantum Light Emitters in Contacted Monolayer MoS ₂ van der Waals Heterodevices. Nano Letters, 2021, 21, 1040-1046.	9.1	36
7	Quantum teleportation with imperfect quantum dots. Npj Quantum Information, 2021, 7, .	6.7	30
8	On-chip integration of reconfigurable quantum photonics with superconducting photodetectors. , 2021, , .		1
9	Integrated photon-pair sources with nonlinear optics. Applied Physics Reviews, 2021, 8, .	11.3	43
10	Reconfigurable photonics with on-chip single-photon detectors. Nature Communications, 2021, 12, 1408.	12.8	68
11	Quantum dots as potential sources of strongly entangled photons: Perspectives and challenges for applications in quantum networks. Applied Physics Letters, $2021, 118, \ldots$	3.3	49
12	Telecom-wavelength InAs QDs with low fine structure splitting grown by droplet epitaxy on GaAs(111)A vicinal substrates. Applied Physics Letters, 2021, 118, .	3.3	12
13	Resonance Fluorescence from Waveguide-Coupled, Strain-Localized, Two-Dimensional Quantum Emitters. ACS Photonics, 2021, 8, 1069-1076.	6.6	33
14	On-Demand Generation of Entangled Photon Pairs in the Telecom C-Band with InAs Quantum Dots. ACS Photonics, 2021, 8, 2337-2344.	6.6	36
15	Ultrafast electric control of cavity mediated single-photon and photon-pair generation with semiconductor quantum dots. Physical Review B, 2021, 104, .	3.2	5
16	Enhancing Si ₃ N ₄ Waveguide Nonlinearity with Heterogeneous Integration of Few-Layer WS ₂ . ACS Photonics, 2021, 8, 2713-2721.	6.6	20
17	Engineering the Luminescence and Generation of Individual Defect Emitters in Atomically Thin MoS ₂ . ACS Photonics, 2021, 8, 669-677.	6.6	48
18	Quantum dot technology for quantum repeaters: from entangled photon generation toward the integration with quantum memories. Materials for Quantum Technology, 2021, 1, 043001.	3.1	15

#	Article	IF	CITATIONS
19	Strain-Controlled Quantum Dot Fine Structure for Entangled Photon Generation at 1550 nm. Nano Letters, 2021, 21, 10501-10506.	9.1	22
20	GaAs Quantum Dot in a Parabolic Microcavity Tuned to ⁸⁷ Rb D ₁ . ACS Photonics, 2020, 7, 29-35.	6.6	6
21	Origin of Antibunching in Resonance Fluorescence. Physical Review Letters, 2020, 125, 170402.	7.8	22
22	Crux of Using the Cascaded Emission of a Three-Level Quantum Ladder System to Generate Indistinguishable Photons. Physical Review Letters, 2020, 125, 233605.	7.8	34
23	Atomistic defects as single-photon emitters in atomically thin MoS2. Applied Physics Letters, 2020, 117, .	3.3	51
24	NbTiN thin films for superconducting photon detectors on photonic and two-dimensional materials. Applied Physics Letters, 2020, 116, .	3.3	25
25	Resonance fluorescence of GaAs quantum dots with near-unity photon indistinguishability (Conference Presentation)., 2020,,.		1
26	On-demand generation of entangled photons in the telecom C-band. , 2020, , .		2
27	Entanglement Swapping with Photons Generated on Demand by a Quantum Dot. Physical Review Letters, 2019, 123, 160501.	7.8	88
28	Dephasing Free Photon Entanglement with a Quantum Dot. ACS Photonics, 2019, 6, 1656-1663.	6.6	25
29	Resonance Fluorescence of GaAs Quantum Dots with Near-Unity Photon Indistinguishability. Nano Letters, 2019, 19, 2404-2410.	9.1	63
30	Reconfigurable frequency coding of triggered single photons in the telecom C–band. Optics Express, 2019, 27, 14400.	3.4	2
31	On-demand generation of background-free single photons from a solid-state source. Applied Physics Letters, 2018, 112, .	3.3	204
32	A stable wavelength-tunable triggered source of single photons and cascaded photon pairs at the telecom C-band. Applied Physics Letters, 2018, 112, 173102.	3.3	21
33	Bright Single InAsP Quantum Dots at Telecom Wavelengths in Position-Controlled InP Nanowires: The Role of the Photonic Waveguide. Nano Letters, 2018, 18, 3047-3052.	9.1	80
34	Strain-Tunable Quantum Integrated Photonics. Nano Letters, 2018, 18, 7969-7976.	9.1	57
35	All-photonic quantum teleportation using on-demand solid-state quantum emitters. Science Advances, 2018, 4, eaau1255.	10.3	53
36	Nanowire Quantum Dots Tuned to Atomic Resonances. Nano Letters, 2018, 18, 7217-7221.	9.1	37

#	Article	IF	Citations
37	Generating, manipulating and detecting quantum states of light at the nanoscale. , 2018, , .		O
38	Phonon-Assisted Two-Photon Interference from Remote Quantum Emitters. Nano Letters, 2017, 17, 4090-4095.	9.1	87
39	Semiconductor devices for entangled photon pair generation: a review. Reports on Progress in Physics, 2017, 80, 076001.	20.1	117
40	Two-photon interference from two blinking quantum emitters. Physical Review B, 2017, 96, .	3.2	14
41	Crystal Phase Quantum Well Emission with Digital Control. Nano Letters, 2017, 17, 6062-6068.	9.1	27
42	On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits. Nature Communications, 2017, 8, 379.	12.8	134
43	Bright nanoscale source of deterministic entangled photonÂpairs violating Bell's inequality. Scientific Reports, 2017, 7, 1700.	3.3	56
44	Controlling the exciton energy of a nanowire quantum dot by strain fields. Applied Physics Letters, 2016, 108, .	3.3	42
45	Thermo-Optic Characterization of Silicon Nitride Resonators for Cryogenic Photonic Circuits. IEEE Photonics Journal, 2016, 8, 1-9.	2.0	83
46	Photon Cascade from a Single Crystal Phase Nanowire Quantum Dot. Nano Letters, 2016, 16, 1081-1085.	9.1	37
47	Deterministic Integration of Single Photon Sources in Silicon Based Photonic Circuits. Nano Letters, 2016, 16, 2289-2294.	9.1	151
48	Monolithic on-chip integration of semiconductor waveguides, beamsplitters and single-photon sources. Journal Physics D: Applied Physics, 2015, 48, 085101.	2.8	36
49	Observation of strongly entangled photon pairs from a nanowire quantum dot. Nature Communications, 2014, 5, 5298.	12.8	179
50	Nanowire Waveguides Launching Single Photons in a Gaussian Mode for Ideal Fiber Coupling. Nano Letters, 2014, 14, 4102-4106.	9.1	107
51	On-demand generation of indistinguishable polarization-entangled photon pairs. Nature Photonics, 2014, 8, 224-228.	31.4	355
52	Controlling quantum dot emission by integration of semiconductor nanomembranes onto piezoelectric actuators. Physica Status Solidi (B): Basic Research, 2012, 249, 687-696.	1.5	36
53	Dependence of the Redshifted and Blueshifted Photoluminescence Spectra of Single <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>In</mml:mi><mml:mi>x</mml:mi>xxxx</mml:msub><mml:msub><mml:msub><mml:mi>G Strain induced anticrossing of bright exciton levels in single self-assembled CaAS/Al<mml:math 10="" 2011s="" 21="" 402="" etters.="" math="" mathml="" mathml"etters.="" mathmt.="" mathmt.<="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathMt."><td>5a</td><td>ni>40 ni>4mml:mro</td></mml:math></mml:mi></mml:msub></mml:msub></mml:math>	5a	ni>40 ni>4mml:mro
54	xmins:mml="http://www.w3.org/1998/Math/MathMt" display="inline"> <mml:mrow><mml:msub><mml:mrow></mml:mrow><mml:mrow>x</mml:mrow></mml:msub></mml:mrow> Ga <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathMt"><mml:mrow><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mrow><mml:mrow< td=""><td>3.2</td><td>76</td></mml:mrow<></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	3.2	76

ł