
Michel Roux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5177954/publications.pdf Version: 2024-02-01

MICHEL ROUX

#	Article	IF	CITATIONS
1	A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains. Genome Biology, 2013, 14, R82.	9.6	403
2	Neuronal and Glial Glycine Transporters Have Different Stoichiometries. Neuron, 2000, 25, 373-383.	8.1	252
3	A Xenopus oocyte subunit: Evidence for a role in the assembly/expression of voltage-gated calcium channels that is separate from its role as a regulatory subunit. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 1703-1708.	7.1	177
4	Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics. Nature Genetics, 2015, 47, 969-978.	21.4	137
5	ANO1 amplification and expression in HNSCC with a high propensity for future distant metastasis and its functions in HNSCC cell lines. British Journal of Cancer, 2010, 103, 715-726.	6.4	124
6	Panretinal, High-Resolution Color Photography of the Mouse Fundus. , 2007, 48, 2769.		111
7	Why glycine transporters have different stoichiometries. FEBS Letters, 2002, 529, 93-101.	2.8	106
8	A Postsynaptic Signaling Pathway that May Account for the Cognitive Defect Due to IL1RAPL1 Mutation. Current Biology, 2010, 20, 103-115.	3.9	106
9	High resolution fundus imaging by confocal scanning laser ophthalmoscopy in the mouse. Vision Research, 2006, 46, 1336-1345.	1.4	99
10	The glutamate transporter EAAT5 works as a presynaptic receptor in mouse rod bipolar cells. Journal of Physiology, 2006, 577, 221-234.	2.9	93
11	Differential Properties of Two Stably Expressed Brainâ€Specific Glycine Transporters. Journal of Neurochemistry, 1998, 71, 2211-2219.	3.9	92
12	Mutations in Lama1 Disrupt Retinal Vascular Development and Inner Limiting Membrane Formation. Journal of Biological Chemistry, 2010, 285, 7697-7711.	3.4	85
13	Kir4.1 and AQP4 associate with Dp71―and utrophinâ€DAPs complexes in specific and defined microdomains of Müller retinal glial cell membrane. Glia, 2008, 56, 597-610.	4.9	80
14	EuroPhenome: a repository for high-throughput mouse phenotyping data. Nucleic Acids Research, 2010, 38, D577-D585.	14.5	75
15	Inactivation of VCP/ter94 Suppresses Retinal Pathology Caused by Misfolded Rhodopsin in Drosophila. PLoS Genetics, 2010, 6, e1001075.	3.5	65
16	New models for human disease from the International Mouse Phenotyping Consortium. Mammalian Genome, 2019, 30, 143-150.	2.2	57
17	GTP hydrolysis mechanisms in ras p21 and in the ras-GAP complex studied by fluorescence measurements on tryptophan mutants. Biochemistry, 1991, 30, 8287-8295.	2.5	53
18	Transsynaptic Binding of Orphan Receptor GPR179 to Dystroglycan-Pikachurin Complex Is Essential for the Synaptic Organization of Photoreceptors. Cell Reports, 2018, 25, 130-145.e5.	6.4	53

MICHEL ROUX

#	Article	IF	CITATIONS
19	Rhodopsin maturation defects induce photoreceptor death by apoptosis: a fly model for RhodopsinPro23His human retinitis pigmentosa. Human Molecular Genetics, 2005, 14, 2547-2557.	2.9	51
20	Mammalian retinal horizontal cells are unconventional GABAergic neurons. Journal of Neurochemistry, 2011, 116, 350-362.	3.9	37
21	Drosophila Fatty Acid Transport Protein Regulates Rhodopsin-1 Metabolism and Is Required for Photoreceptor Neuron Survival. PLoS Genetics, 2012, 8, e1002833.	3.5	37
22	Identification of genes required for eye development by high-throughput screening of mouse knockouts. Communications Biology, 2018, 1, 236.	4.4	37
23	Functional Implication of Dp71 in Osmoregulation and Vascular Permeability of the Retina. PLoS ONE, 2009, 4, e7329.	2.5	36
24	A Population Study of Common Ocular Abnormalities in C57BL/6N <i>rd8</i> Mice. , 2018, 59, 2252.		31
25	Comparing the Bbs10 complete knockout phenotype with a specific renal epithelial knockout one highlights the link between renal defects and systemic inactivation in mice. Cilia, 2015, 4, 10.	1.8	29
26	The Glial and the Neuronal Glycine Transporters Differ in Their Reactivity to Sulfhydryl Reagents. Journal of Biological Chemistry, 2001, 276, 17699-17705.	3.4	28
27	Fast Inactivation in Shaker K+ Channels. Journal of General Physiology, 1998, 111, 625-638.	1.9	26
28	Reevaluation of Dystrophin Localization in the Mouse Retina. , 2011, 52, 7901.		25
29	Proteomic Survey Reveals Altered Energetic Patterns and Metabolic Failure Prior to Retinal Degeneration. Journal of Neuroscience, 2014, 34, 2797-2812.	3.6	25
30	SCA7 Mouse Cerebellar Pathology Reveals Preferential Downregulation of Key Purkinje Cell-Identity Genes and Shared Disease Signature with SCA1 and SCA2. Journal of Neuroscience, 2021, 41, 4910-4936.	3.6	25
31	Murine neonatal infection provides an efficient model for congenital ocular toxoplasmosis. Experimental Parasitology, 2010, 124, 190-196.	1.2	23
32	βâ€Endorphin expression in the mouse retina. Journal of Comparative Neurology, 2010, 518, 3130-3148.	1.6	23
33	External barium influences the gating charge movement of Shaker potassium channels. Biophysical Journal, 1997, 72, 77-84.	0.5	21
34	Glycine receptors in a population of adult mammalian cones. Journal of Physiology, 2006, 571, 391-401.	2.9	18
35	Delta Opioid Receptors Regulate Temporoammonic-Activated Feedforward Inhibition to the Mouse CA1 Hippocampus. PLoS ONE, 2013, 8, e79081.	2.5	15
36	Elk3 Deficiency Causes Transient Impairment in Post-Natal Retinal Vascular Development and Formation of Tortuous Arteries in Adult Murine Retinae. PLoS ONE, 2014, 9, e107048.	2.5	15

MICHEL ROUX

#	Article	IF	CITATIONS
37	Physiological Maturation of Photoreceptors Depends on the Voltage-Gated Sodium Channel NaV1.6 (Scn8a). Journal of Neuroscience, 2005, 25, 5046-5050.	3.6	13
38	Asymmetrical Functional Deficits of ON and OFF Retinal Processing in the <i>mdx^{3Cv}</i> Mouse Model of Duchenne Muscular Dystrophy. , 2016, 57, 5788.		13
39	Highâ€Frequency Stimulation of Normal and Blind Mouse Retinas Using TiO ₂ Nanotubes. Advanced Functional Materials, 2018, 28, 1804639.	14.9	13
40	Deletion of the <i>App-Runx1</i> region in mice models human partial monosomy 21. DMM Disease Models and Mechanisms, 2015, 8, 623-634.	2.4	12
41	Retinoic Acid Receptor (RAR)-α Is Not Critically Required for Mediating Retinoic Acid Effects in the Developing Mouse Retina. , 2010, 51, 3281.		11
42	Rescue of Defective Electroretinographic Responses in Dp71-Null Mice With AAV-Mediated Reexpression of Dp71. , 2020, 61, 11.		9
43	In vivo phenotypic and molecular characterization of retinal degeneration in mouse models of three ciliopathies. Experimental Eye Research, 2019, 186, 107721.	2.6	8
44	Panton–Valentine Leukocidin Colocalizes with Retinal Ganglion and Amacrine Cells and Activates Glial Reactions and Microglial Apoptosis. Scientific Reports, 2018, 8, 2953.	3.3	7
45	Hyperactivation of Alk induces neonatal lethality in knock-in AlkF1178L mice. Oncotarget, 2014, 5, 2703-2713.	1.8	6
46	Panton-Valentine Leucocidin Proves Direct Neuronal Targeting and Its Early Neuronal and Glial Impacts a Rabbit Retinal Explant Model. Toxins, 2018, 10, 455.	3.4	5
47	Evidence for functional GABA _A but not GABA _C receptors in mouse cone photoreceptors. Visual Neuroscience, 2019, 36, E005.	1.0	5
48	High-resolution imaging of retinal cells in the living eye. Eye, 2007, 21, S18-S20.	2.1	1