
Nigel M Hooper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5177397/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of protein aggregation in the pathogenesis of inclusion body myositis Clinical and Experimental Rheumatology, 2022, 40, 414-424.	0.8	5
2	The role of protein aggregation in the pathogenesis of inclusion body myositis Clinical and Experimental Rheumatology, 2022, 40, 414-424.	0.8	0
3	Mild Cognitive Impairment: the Manchester consensus. Age and Ageing, 2021, 50, 72-80.	1.6	80
4	Widespread Decreases in Cerebral Copper Are Common to Parkinson's Disease Dementia and Alzheimer's Disease Dementia. Frontiers in Aging Neuroscience, 2021, 13, 641222.	3.4	21
5	Nanoparticle-Enabled Enrichment of Longitudinal Blood Proteomic Fingerprints in Alzheimer's Disease. ACS Nano, 2021, 15, 7357-7369.	14.6	17
6	Exploiting the neuroprotective effects of α-klotho to tackle ageing- and neurodegeneration-related cognitive dysfunction. Neuronal Signaling, 2021, 5, NS20200101.	3.2	12
7	Substantively Lowered Levels of Pantothenic Acid (Vitamin B5) in Several Regions of the Human Brain in Parkinson's Disease Dementia. Metabolites, 2021, 11, 569.	2.9	17
8	Severe and Regionally Widespread Increases in Tissue Urea in the Human Brain Represent a Novel Finding of Pathogenic Potential in Parkinson's Disease Dementia. Frontiers in Molecular Neuroscience, 2021, 14, 711396.	2.9	9
9	3D hydrogel models of the neurovascular unit to investigate blood–brain barrier dysfunction. Neuronal Signaling, 2021, 5, NS20210027.	3.2	20
10	Effects of Alterations of Post-Mortem Delay and Other Tissue-Collection Variables on Metabolite Levels in Human and Rat Brain. Metabolites, 2020, 10, 438.	2.9	12
11	Extracellular Vesicles Isolated from Human Induced Pluripotent Stem Cell-Derived Neurons Contain a Transcriptional Network. Neurochemical Research, 2020, 45, 1711-1728.	3.3	11
12	Gene Ontology Curation of Neuroinflammation Biology Improves the Interpretation of Alzheimer's Disease Gene Expression Data. Journal of Alzheimer's Disease, 2020, 75, 1417-1435.	2.6	18
13	Evidence that levels of nine essential metals in post-mortem human-Alzheimer's-brain and <i>ex vivo</i> rat-brain tissues are unaffected by differences in post-mortem delay, age, disease staging, and brain bank location. Metallomics, 2020, 12, 952-962.	2.4	12
14	A Preliminary Evaluation of the Pro-Chondrogenic Potential of 3D-Bioprinted Poly(ester Urea) Scaffolds. Polymers, 2020, 12, 1478.	4.5	9
15	The cellular expression and proteolytic processing of the amyloid precursor protein is independent of TDP-43. Bioscience Reports, 2020, 40, .	2.4	5
16	Discovery and characterization of ACE2 – a 20-year journey of surprises from vasopeptidase to COVID-19. Clinical Science, 2020, 134, 2489-2501.	4.3	16
17	Proteolysis of the low density lipoprotein receptor by bone morphogenetic protein-1 regulates cellular cholesterol uptake. Scientific Reports, 2019, 9, 11416.	3.3	13
18	Quantitative interaction proteomics reveals differences in the interactomes of amyloid precursor protein isoforms. Journal of Neurochemistry, 2019, 149, 399-412.	3.9	12

#	Article	IF	CITATIONS
19	Blended alginate/collagen hydrogels promote neurogenesis and neuronal maturation. Materials Science and Engineering C, 2019, 104, 109904.	7.3	81
20	Proteolytic shedding of the prion protein via activation of metallopeptidase ADAM10 reduces cellular binding and toxicity of amyloid-l² oligomers. Journal of Biological Chemistry, 2019, 294, 7085-7097.	3.4	38
21	Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nature Genetics, 2019, 51, 414-430.	21.4	1,962
22	P4â€524: PROTEOLYTIC CLEAVAGE OF TAU IN CORTICOBASAL DEGENERATION AND PROGRESSIVE SUPRANUCLEAR PALSY PATHOGENESIS. Alzheimer's and Dementia, 2019, 15, P1514.	0.8	0
23	Tau Proteolysis in the Pathogenesis of Tauopathies: Neurotoxic Fragments and Novel Biomarkers. Journal of Alzheimer's Disease, 2018, 63, 13-33.	2.6	111
24	Tissue Engineering 3D Neurovascular Units: A Biomaterials and Bioprinting Perspective. Trends in Biotechnology, 2018, 36, 457-472.	9.3	78
25	Plasma metals as potential biomarkers in dementia: a case–control study in patients with sporadic Alzheimer's disease. BioMetals, 2018, 31, 267-276.	4.1	13
26	A step-by-step translation of evidence into a psychosocial intervention for everyday activities in dementia: a focus group study. Aging and Mental Health, 2018, 22, 323-329.	2.8	3
27	Amyloid β synaptotoxicity is Wntâ€PCP dependent and blocked by fasudil. Alzheimer's and Dementia, 2018, 14, 306-317.	0.8	81
28	Polygenic risk score in postmortem diagnosed sporadic early-onset Alzheimer's disease. Neurobiology of Aging, 2018, 62, 244.e1-244.e8.	3.1	30
29	P3â€230: IDENTIFICATION OF A PLASMA PROTEIN SIGNATURE FOR ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P1159.	0.8	0
30	P3â€142: SOLUBLE AMYLOID PRECURSOR PROTEIN α (SAPPα) PROMOTES SYNAPTOGENESIS IN HUMANâ€IND PLURIPOTENT STEM CELLâ€DERIVED NEURONS. Alzheimer's and Dementia, 2018, 14, P1122.	UÇED	0
31	P1â€219: AMYLOIDâ€Î² DEGRADATION IN INDUCED PLURIPOTENT STEM CELL (IPSC)â€DERIVED NEURONS. Alzh and Dementia, 2018, 14, P362.	eimer's 0.8	0
32	P4â€054: KLOTHO ENHANCES NEURONAL ACTIVITY THROUGH INTERACTION WITH A CELLâ€&URFACE RECEPTO Alzheimer's and Dementia, 2018, 14, P1453.	R. _{0.8}	0
33	O1â€06â€06: PROTEOLYTIC CLEAVAGE OF TAU IN DEMENTIA PATHOGENESIS. Alzheimer's and Dementia, 2018, P232.	14 0.8	0
34	Soluble Amyloid Precursor Protein α: Friend or Foe?. Advances in Experimental Medicine and Biology, 2018, 1112, 177-183.	1.6	13
35	Improving the Gene Ontology Resource to Facilitate More Informative Analysis and Interpretation of Alzheimer's Disease Data. Genes, 2018, 9, 593.	2.4	15
36	Modelling Sporadic Alzheimer's Disease Using Induced Pluripotent Stem Cells. Neurochemical Research, 2018, 43, 2179-2198.	3.3	27

#	Article	IF	CITATIONS
37	P1â€183: THE ROLE OF AMYLIN IN ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P348.	0.8	0
38	Why Is Research on Amyloid-β Failing to Give New Drugs for Alzheimer's Disease?. ACS Chemical Neuroscience, 2017, 8, 1435-1437.	3.5	201
39	Tau Diagnostics and Clinical Studies. Journal of Molecular Neuroscience, 2017, 63, 123-130.	2.3	11
40	Proteolytic cleavage of the low density lipoprotein receptor regulates cellular cholesterol uptake. Atherosclerosis, 2017, 263, e221.	0.8	0
41	[P4–130]: βâ€AMYLOID SYNAPTOTOXICITY DRIVES βâ€AMYLOID PRODUCTION. Alzheimer's and Dementia, 2 P1306.	2017, 13, 0.8	Ο
42	Mutation analysis of sporadic early-onset Alzheimer's disease using the NeuroX array. Neurobiology of Aging, 2017, 49, 215.e1-215.e8.	3.1	21
43	Elevation of brain glucose and polyol-pathway intermediates with accompanying brain-copper deficiency in patients with Alzheimer's disease: metabolic basis for dementia. Scientific Reports, 2016, 6, 27524.	3.3	68
44	A Greek Tragedy: The Growing Complexity of Alzheimer Amyloid Precursor Protein Proteolysis. Journal of Biological Chemistry, 2016, 291, 19235-19244.	3.4	151
45	ABCA7 p.G215S as potential protective factor for Alzheimer's disease. Neurobiology of Aging, 2016, 46, 235.e1-235.e9.	3.1	37
46	Prion protein "gamma-cleavage― characterizing a novel endoproteolytic processing event. Cellular and Molecular Life Sciences, 2016, 73, 667-683.	5.4	39
47	Screening exons 16 and 17 of the amyloid precursor protein gene in sporadic early-onset Alzheimer's disease. Neurobiology of Aging, 2016, 39, 220.e1-220.e7.	3.1	12
48	Amyloid-Î ² Receptors: The Good, the Bad, and the Prion Protein. Journal of Biological Chemistry, 2016, 291, 3174-3183.	3.4	201
49	Ablation of Prion Protein in Wild Type Human Amyloid Precursor Protein (APP) Transgenic Mice Does Not Alter The Proteolysis of APP, Levels of Amyloid-β or Pathologic Phenotype. PLoS ONE, 2016, 11, e0159119.	2.5	9
50	The effects of the cellular and infectious prion protein on the neuronal adaptor protein X11α. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 2213-2221.	2.4	2
51	The Role of Tissue Non-specific Alkaline Phosphatase (TNAP) in Neurodegenerative Diseases: Alzheimer's Disease in the Focus. Sub-Cellular Biochemistry, 2015, 76, 363-374.	2.4	18
52	Heme oxygenase-1 protects against Alzheimer's amyloid-β1-42-induced toxicity via carbon monoxide production. Cell Death and Disease, 2014, 5, e1569-e1569.	6.3	73
53	Angiotensin-converting enzyme 2 is subject to post-transcriptional regulation by <i>miR-421</i> . Clinical Science, 2014, 127, 243-249.	4.3	84
54	A label-free electrical impedimetric biosensor for the specific detection of Alzheimer's amyloid-beta oligomers. Biosensors and Bioelectronics, 2014, 56, 83-90.	10.1	166

#	Article	IF	CITATIONS
55	Lipid rafts: linking prion protein to zinc transport and amyloid-β toxicity in Alzheimer's disease. Frontiers in Cell and Developmental Biology, 2014, 2, 41.	3.7	18
56	P4-210: THE DEMENTIA CONSORTIUM: AN INTERNATIONAL PARTNERSHIP MODEL TO ACCELERATE DRUG DISCOVERY. , 2014, 10, P865-P865.		0
57	Discovery of Biphenylacetamide-Derived Inhibitors of BACE1 Using de Novo Structure-Based Molecular Design. Journal of Medicinal Chemistry, 2013, 56, 1843-1852.	6.4	16
58	Prion Protein-mediated Toxicity of Amyloid-β Oligomers Requires Lipid Rafts and the Transmembrane LRP1. Journal of Biological Chemistry, 2013, 288, 8935-8951.	3.4	131
59	Neuronal zinc regulation and the prion protein. Prion, 2013, 7, 203-208.	1.8	47
60	Membrane dipeptidase. , 2013, , 1670-1673.		2
61	Prion Protein Is Decreased in Alzheimer's Brain and Inversely Correlates with BACE1 Activity, Amyloid-Î ² Levels and Braak Stage. PLoS ONE, 2013, 8, e59554.	2.5	35
62	Angiotensin-Converting Enzyme-2. , 2013, , 499-504.		5
63	BIN1 Is Decreased in Sporadic but Not Familial Alzheimer's Disease or in Aging. PLoS ONE, 2013, 8, e78806.	2.5	65
64	Xaa-Trp Aminopeptidase. , 2013, , 1701-1702.		0
65	Prion protein facilitates uptake of zinc into neuronal cells. Nature Communications, 2012, 3, 1134.	12.8	119
66	Regulation of amyloid- \hat{l}^2 production by the prion protein. Prion, 2012, 6, 217-222.	1.8	19
67	Alkaline Phosphatase Is Increased in both Brain and Plasma in Alzheimer's Disease. Neurodegenerative Diseases, 2012, 9, 31-37.	1.4	71
68	Cellular Prion Protein Expression Is Not Regulated by the Alzheimer's Amyloid Precursor Protein Intracellular Domain. PLoS ONE, 2012, 7, e31754.	2.5	13
69	Lipid Rafts: Linking Alzheimer's Amyloid- <i>β</i> Production, Aggregation, and Toxicity at Neuronal Membranes. International Journal of Alzheimer's Disease, 2011, 2011, 1-14.	2.0	156
70	The Role of Zinc in Alzheimer's Disease. International Journal of Alzheimer's Disease, 2011, 2011, 1-10.	2.0	92
71	The role of lipid rafts in prion protein biology. Frontiers in Bioscience - Landmark, 2011, 16, 151.	3.0	72
72	Glypicanâ€l facilitates prion conversion in lipid rafts. Journal of Neurochemistry, 2011, 116, 721-725.	3.9	24

#	Article	IF	CITATIONS
73	Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nature Genetics, 2011, 43, 429-435.	21.4	1,708
74	Neprilysin, obesity and the metabolic syndrome. International Journal of Obesity, 2011, 35, 1031-1040.	3.4	137
75	PCSK9: an emerging target for treatment of hypercholesterolemia. Expert Opinion on Therapeutic Targets, 2011, 15, 157-168.	3.4	43
76	A functional XPNPEP2 promoter haplotype leads to reduced plasma aminopeptidase P and increased risk of ACE inhibitor-induced angioedema. Human Mutation, 2011, 32, 1326-1331.	2.5	104
77	Prion Protein Interacts with BACE1 Protein and Differentially Regulates Its Activity toward Wild Type and Swedish Mutant Amyloid Precursor Protein. Journal of Biological Chemistry, 2011, 286, 33489-33500.	3.4	53
78	GPI-Anchored Proteins in Health and Disease. , 2011, , 39-55.		11
79	Plasma alkaline phosphatase is elevated in Alzheimer's disease and inversely correlates with cognitive function. International Journal of Molecular Epidemiology and Genetics, 2011, 2, 114-21.	0.4	29
80	Prion Protein is Reduced in Aging and in Sporadic but not in Familial Alzheimer's Disease. Journal of Alzheimer's Disease, 2010, 22, 1023-1031.	2.6	39
81	Ligandâ€Stimulated VEGFR2 Signaling is Regulated by Coâ€Ordinated Trafficking and Proteolysis. Traffic, 2010, 11, 161-174.	2.7	124
82	The Transcriptionally Active Amyloid Precursor Protein (APP) Intracellular Domain Is Preferentially Produced from the 695 Isoform of APP in a β-Secretase-dependent Pathway. Journal of Biological Chemistry, 2010, 285, 41443-41454.	3.4	175
83	Plasma Angiotensin-Converting Enzyme in Alzheimer's Disease. Journal of Alzheimer's Disease, 2009, 16, 609-618.	2.6	28
84	Prion protein and Alzheimer disease. Prion, 2009, 3, 190-194.	1.8	66
85	Role of ADAMs in the Ectodomain Shedding and Conformational Conversion of the Prion Protein. Journal of Biological Chemistry, 2009, 284, 22590-22600.	3.4	128
86	Rab GTPase Regulation of VEGFR2 Trafficking and Signaling in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1119-1124.	2.4	65
87	Glypican-1 Mediates Both Prion Protein Lipid Raft Association and Disease Isoform Formation. PLoS Pathogens, 2009, 5, e1000666.	4.7	76
88	Association of a GPI-anchored protein with detergent-resistant membranes facilitates its trafficking through the early secretory pathway. Experimental Cell Research, 2009, 315, 348-356.	2.6	15
89	Discovery of novel non-peptide inhibitors of BACE-1 using virtual high-throughput screening. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6770-6774.	2.2	28
90	α-cleavage of the prion protein occurs in a late compartment of the secretory pathway and is independent of lipid rafts. Molecular and Cellular Neurosciences, 2009, 40, 242-248.	2.2	61

#	Article	IF	CITATIONS
91	Antibody-mediated disruption of the interaction between PCSK9 and the low-density lipoprotein receptor. Biochemical Journal, 2009, 419, 577-584.	3.7	92
92	Protective effect of prion protein via the Nâ€ŧerminal region in mediating a protective effect on paraquatâ€induced oxidative injury in neuronal cells. Journal of Neuroscience Research, 2008, 86, 653-659.	2.9	30
93	Calmodulin interacts with angiotensinâ€converting enzymeâ€2 (ACE2) and inhibits shedding of its ectodomain. FEBS Letters, 2008, 582, 385-390.	2.8	115
94	Angiotensin-converting enzyme 2 and new insights into the renin–angiotensin system. Biochemical Pharmacology, 2008, 75, 781-786.	4.4	87
95	A new take on prions: preventing Alzheimer's disease. Trends in Biochemical Sciences, 2008, 33, 151-155.	7.5	27
96	Visualization of Detergent Solubilization of Membranes: Implications for the Isolation of Rafts. Biophysical Journal, 2008, 94, 1326-1340.	0.5	86
97	Membrane raft actin deficiency and altered Ca2+-induced vesiculation in stomatin-deficient overhydrated hereditary stomatocytosis. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 125-132.	2.6	25
98	Emerging and potential therapies for Alzheimer's disease. Expert Opinion on Therapeutic Targets, 2008, 12, 693-704.	3.4	27
99	The bradykinin-degrading aminopeptidase P is increased in women taking the oral contraceptive pill. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2008, 9, 221-225.	1.7	18
100	Mechanism of the metal-mediated endocytosis of the prion protein. Biochemical Society Transactions, 2008, 36, 1272-1276.	3.4	32
101	Cellular prion protein regulates β-secretase cleavage of the Alzheimer's amyloid precursor protein. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11062-11067.	7.1	249
102	The low-density lipoprotein receptor-related protein 1 (LRP1) mediates the endocytosis of the cellular prion protein. Biochemical Journal, 2007, 402, 17-23.	3.7	118
103	Increased Circulating Insulin-like Growth Factor-1 in Late-onset Alzheimer's Disease. Journal of Alzheimer's Disease, 2007, 12, 285-290.	2.6	95
104	Prion protein in Alzheimer's disease. Future Neurology, 2007, 2, 587-590.	0.5	5
105	Role of lipid rafts in the processing of the pathogenic prion and Alzheimer's amyloid-β proteins. Seminars in Cell and Developmental Biology, 2007, 18, 638-648.	5.0	52
106	Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers. Molecular Membrane Biology, 2007, 24, 233-242.	2.0	38
107	Angiotensin I-Converting Enzyme (ACE). , 2007, , 1-7.		1
108	Contamination of nuclear fractions with plasma membrane lipid rafts. Proteomics, 2007, 7, 1059-1064.	2.2	17

#	Article	IF	CITATIONS
109	Identification and characterisation of the angiotensin converting enzyme-3 (ACE3) gene: a novel mammalian homologue of ACE. BMC Genomics, 2007, 8, 194.	2.8	25
110	Cellular prion protein protects against reactive-oxygen-species-induced DNA damage. Free Radical Biology and Medicine, 2007, 43, 959-967.	2.9	52
111	Release of renal dipeptidase from Glycosylphosphatidylinositol anchor by insulin-triggered phospholipase c/intracellular Ca2+. Archives of Pharmacal Research, 2007, 30, 608-615.	6.3	0
112	Angiotensin-Converting Enzyme-2 (ACE2). , 2007, , 1-4.		2
113	Membrane Dipeptidase. , 2007, , 1-5.		0
114	Secretases as Pharmacological Targets in Alzheimer's Disease. , 2007, , 113-124.		1
115	The prion protein and lipid rafts (Review). Molecular Membrane Biology, 2006, 23, 89-99.	2.0	242
116	Effect of Hydrophobic Mismatch on Phase Behavior of Lipid Membranes. Biophysical Journal, 2006, 90, 4104-4118.	0.5	23
117	Isolation and Characterization of Glycosylphosphatidylinositol-Anchored Peptides by Hydrophilic Interaction Chromatography and MALDI Tandem Mass Spectrometry. Analytical Chemistry, 2006, 78, 3335-3341.	6.5	57
118	The involvement of lipid rafts in Alzheimer's disease (Review). Molecular Membrane Biology, 2006, 23, 111-122.	2.0	182
119	A broad-spectrum fluorescence-based peptide library for the rapid identification of protease substrates. Proteomics, 2006, 6, 2112-2120.	2.2	45
120	Foreword: lipid rafts/biophysics, cell signalling, trafficking and processing. Molecular Membrane Biology, 2006, 23, 1-3.	2.0	5
121	Circulating Activities of Angiotensin-Converting Enzyme, Its Homolog, Angiotensin-Converting Enzyme 2, and Neprilysin in a Family Study. Hypertension, 2006, 48, 914-920.	2.7	167
122	Emerging therapeutics for Alzheimer's disease. Expert Review of Neurotherapeutics, 2006, 6, 695-704.	2.8	29
123	A Mutation in Aminopeptidase N (CD13) Isolated from a Patient Suffering from Leukemia Leads to an Arrest in the Endoplasmic Reticulum. Journal of Biological Chemistry, 2006, 281, 11894-11900.	3.4	9
124	Identification of critical active-site residues in angiotensin-converting enzyme-2 (ACE2) by site-directed mutagenesis. FEBS Journal, 2005, 272, 3512-3520.	4.7	111
125	Tumor Necrosis Factor-α Convertase (ADAM17) Mediates Regulated Ectodomain Shedding of the Severe-acute Respiratory Syndrome-Coronavirus (SARS-CoV) Receptor, Angiotensin-converting Enzyme-2 (ACE2). Journal of Biological Chemistry, 2005, 280, 30113-30119.	3.4	615
126	Angiotensin-converting enzyme as a GPIase: a critical reevaluation. Nature Medicine, 2005, 11, 1139-1140.	30.7	28

#	Article	IF	CITATIONS
127	Assigning functions to distinct regions of the N-terminus of the prion protein that are involved in its copper-stimulated, clathrin-dependent endocytosis. Journal of Cell Science, 2005, 118, 5141-5153.	2.0	142
128	Angiotensin-converting Enzyme 2 (ACE2), But Not ACE, Is Preferentially Localized to the Apical Surface of Polarized Kidney Cells. Journal of Biological Chemistry, 2005, 280, 39353-39362.	3.4	163
129	Reactive Oxygen Species-mediated β-Cleavage of the Prion Protein in the Cellular Response to Oxidative Stress. Journal of Biological Chemistry, 2005, 280, 35914-35921.	3.4	151
130	Proteolytic mechanisms in amyloid-Î ² metabolism: therapeutic implications for Alzheimer's disease. Trends in Molecular Medicine, 2005, 11, 464-472.	6.7	116
131	The Kinetics of Phase Separation in Asymmetric Membranes. Biophysical Journal, 2005, 88, 4072-4083.	0.5	32
132	Angiotensin-converting enzyme 2. , 2004, , 349-351.		10
133	N-Glycans, not the GPI anchor, mediate the apical targeting of a naturally glycosylated, GPI-anchored protein in polarised epithelial cells. Journal of Cell Science, 2004, 117, 5079-5086.	2.0	53
134	Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochemical Journal, 2004, 383, 45-51.	3.7	539
135	Dual Mechanisms for Shedding of the Cellular Prion Protein. Journal of Biological Chemistry, 2004, 279, 11170-11178.	3.4	120
136	The role of ADAM10 and ADAM17 in the ectodomain shedding of angiotensin converting enzyme and the amyloid precursor protein. FEBS Journal, 2004, 271, 2539-2547.	0.2	78
137	Normalized Proliferation of Normal and Psoriatic Keratinocytes by Suppression of sAPPα-Release. Journal of Investigative Dermatology, 2004, 123, 556-563.	0.7	19
138	ACE2: from vasopeptidase to SARS virus receptor. Trends in Pharmacological Sciences, 2004, 25, 291-294.	8.7	483
139	Membrane dipeptidase. , 2004, , 994-997.		4
140	Secretase-Mediated Cell Surface Shedding of the Angiotensin-Converting Enzyme. Protein and Peptide Letters, 2004, 11, 423-432.	0.9	43
141	X-Trp aminopeptidase. , 2004, , 1013-1014.		1
142	Angiotensin converting enzyme-2 (ACE2) and its possible roles in hypertension, diabetes and cardiac function. International Journal of Peptide Research and Therapeutics, 2003, 10, 377-385.	0.1	13
143	The prion protein and neuronal zinc homeostasis. Trends in Biochemical Sciences, 2003, 28, 406-410.	7.5	78
144	Could inhibition of the proteasome cause mad cow disease?. Trends in Biotechnology, 2003, 21, 144-145.	9.3	14

#	Article	IF	CITATIONS
145	ADAMs family members as amyloid precursor protein αâ€secretases. Journal of Neuroscience Research, 2003, 74, 342-352.	2.9	402
146	Tethering the N-terminus of the prion protein compromises the cellular response to oxidative stress. Journal of Neurochemistry, 2003, 84, 480-490.	3.9	64
147	An ACE structure. Nature Structural and Molecular Biology, 2003, 10, 155-157.	8.2	34
148	Angiotensin Converting Enzyme-2 (ACE2) and its Possible Roles in Hypertension, Diabetes and Cardiac Function. International Journal of Peptide Research and Therapeutics, 2003, 10, 377-385.	0.1	17
149	Changes of angiotensin-converting enzyme activity in the pancreas of chronic hypoxia and acute pancreatitis. International Journal of Biochemistry and Cell Biology, 2003, 35, 944-954.	2.8	37
150	Angiotensin-Converting Enzyme-2 (ACE2): Comparative Modeling of the Active Site, Specificity Requirements, and Chloride Dependenceâ€. Biochemistry, 2003, 42, 13185-13192.	2.5	164
151	Glycosylation efficiency of Asn-Xaa-Thr sequons is independent of distance from the C-terminus in membrane dipeptidase. Glycobiology, 2003, 13, 641-646.	2.5	17
152	Surface Coat Remodeling during Differentiation of Trypanosoma brucei. Journal of Biological Chemistry, 2003, 278, 24665-24672.	3.4	47
153	Exclusively targeting β-secretase to lipid rafts by GPI-anchor addition up-regulates β-site processing of the amyloid precursor protein. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11735-11740.	7.1	346
154	The N-terminal Region of the Prion Protein Ectodomain Contains a Lipid Raft Targeting Determinant. Journal of Biological Chemistry, 2003, 278, 37241-37248.	3.4	88
155	The Caenorhabditis elegans Orthologue of Mammalian Puromycin-sensitive Aminopeptidase Has Roles in Embryogenesis and Reproduction. Journal of Biological Chemistry, 2003, 278, 42795-42801.	3.4	30
156	The ectodomain shedding of angiotensin-converting enzyme is independent of its localisation in lipid rafts. Journal of Cell Science, 2003, 116, 3079-3087.	2.0	24
157	Distance of sequons to the C-terminus influences the cellular N-glycosylation of the prion protein. Biochemical Journal, 2003, 370, 351-355.	3.7	24
158	ACEH/ACE2 is a novel mammalian metallocarboxypeptidase and a homologue of angiotensin-converting enzyme insensitive to ACE inhibitors. Canadian Journal of Physiology and Pharmacology, 2002, 80, 346-353.	1.4	156
159	Nitric oxide inhibits the shedding of the glycosylphosphatidylinositol-anchored dipeptidase from porcine renal proximal tubules. Biochemical Journal, 2002, 364, 211-218.	3.7	8
160	The C-terminal domain, but not the interchain disulphide, is required for the activity and intracellular trafficking of aminopeptidase A. Biochemical Journal, 2002, 362, 191-197.	3.7	15
161	Role of the transmembrane form of the prion protein in neurodegeneration. Biochemical Society Transactions, 2002, 30, A79-A79.	3.4	0
162	Structureâ ~ Activity Relationship of Hydroxamate-Based Inhibitors on the Secretases that Cleave the Amyloid Precursor Protein, Angiotensin Converting Enzyme, CD23, and Pro-Tumor Necrosis Factor-α. Biochemistry, 2002, 41, 4972-4981.	2.5	46

#	Article	IF	CITATIONS
163	Muscarine enhances soluble amyloid precursor protein secretion in human neuroblastoma SH-SY5Y by a pathway dependent on protein kinase Cα, src-tyrosine kinase and extracellular signal-regulated kinase but not phospholipase C. Molecular Brain Research, 2002, 102, 62-72.	2.3	51
164	The angiotensin–converting enzyme gene family: genomics and pharmacology. Trends in Pharmacological Sciences, 2002, 23, 177-183.	8.7	358
165	Glycosyl-Phosphatidylinositol (GPI)-Anchored Renal Dipeptidase Is Released by a Phospholipase C in vivo. Kidney and Blood Pressure Research, 2002, 25, 7-12.	2.0	14
166	Prion Disease: Close Encounters Of The Cellular Kind. Current Biology, 2002, 12, R248-R249.	3.9	0
167	Spontaneous release of glycosylphosphatidylinositol (GPI)-anchored renal dipeptidase from porcine renal proximal tubules. Archives of Pharmacal Research, 2002, 25, 80-85.	6.3	4
168	The C-terminal domain, but not the interchain disulphide, is required for the activity and intracellular trafficking of aminopeptidase A. Biochemical Journal, 2002, 362, 191.	3.7	13
169	Proteases: a primer. Essays in Biochemistry, 2002, 38, 1-8.	4.7	36
170	The response of neurones and glial cells to elevated copper. Brain Research Bulletin, 2001, 55, 219-224.	3.0	30
171	The carboxyl terminus of Dictyostelium discoideum protein 1I encodes a functional glycosyl-phosphatidylinositol signal sequence1The nucleotide sequence reported in this paper has been submitted to the EMBL Nucleotide Sequence Database with accession No. AJ292240.1. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1511, 317-329.	2.6	0
172	Endogenous glycosylphosphatidylinositol-specific phospholipase C releases renal dipeptidase from kidney proximal tubules in vitro. Biochemical Journal, 2001, 353, 339.	3.7	15
173	Roles of the juxtamembrane and extracellular domains of angiotensin-converting enzyme in ectodomain shedding. Biochemical Journal, 2001, 358, 185.	3.7	19
174	Differential effects of glycosphingolipids on the detergent-insolubility of the glycosylphosphatidylinositol-anchored membrane dipeptidase. Biochemical Journal, 2001, 358, 209.	3.7	31
175	Endogenous glycosylphosphatidylinositol-specific phospholipase C releases renal dipeptidase from kidney proximal tubules in vitro. Biochemical Journal, 2001, 353, 339-344.	3.7	26
176	Roles of the juxtamembrane and extracellular domains of angiotensin-converting enzyme in ectodomain shedding. Biochemical Journal, 2001, 358, 185-192.	3.7	35
177	Differential effects of glycosphingolipids on the detergent-insolubility of the glycosylphosphatidylinositol-anchored membrane dipeptidase. Biochemical Journal, 2001, 358, 209-216.	3.7	40
178	Characterization of Detergent-Insoluble Complexes Containing the Familial Alzheimer's Disease-Associated Presenilins. Journal of Neurochemistry, 2001, 72, 1534-1543.	3.9	68
179	Determination of glycosyl-phosphatidylinositol membrane protein anchorage. Proteomics, 2001, 1, 748-755.	2.2	46
180	In vitro cytocidal effects on Trypanosoma brucei and inhibition of Leishmania major GP63 by peptidomimetic metalloprotease inhibitors. Molecular and Biochemical Parasitology, 2001, 114, 111-117.	1.1	42

#	Article	IF	CITATIONS
181	Ablation of the metal ion-induced endocytosis of the prion protein by disease-associated mutation of the octarepeat region. Current Biology, 2001, 11, 519-523.	3.9	216
182	A Point Mutation in the Juxtamembrane Stalk of Human Angiotensin I-converting Enzyme Invokes the Action of a Distinct Secretase. Journal of Biological Chemistry, 2001, 276, 21105-21109.	3.4	26
183	Determination of glycosyl-phosphatidylinositol membrane protein anchorage. , 2001, 1, 748.		1
184	Determination of glycosyl-phosphatidylinositol membrane protein anchorage. Proteomics, 2001, 1, 748-755.	2.2	1
185	Inhibition of α-Secretase by Zinc Metalloproteinase Inhibitors. , 2000, 32, 203-216.		4
186	Shedding of somatic angiotensin-converting enzyme (ACE) is inefficient compared with testis ACE despite cleavage at identical stalk sites. Biochemical Journal, 2000, 347, 711.	3.7	18
187	Shedding of somatic angiotensin-converting enzyme (ACE) is inefficient compared with testis ACE despite cleavage at identical stalk sites. Biochemical Journal, 2000, 347, 711-718.	3.7	74
188	REGULATION OF sAPPÎ \pm SECRETION BY MUSCARINE IN THE HUMAN NEUROBLASTOMA CELL LINE SH-SY5Y. Biochemical Society Transactions, 2000, 28, A33-A33.	3.4	0
189	C-terminal membrane anchorage is required for N-glycosylation of the prion protein. Biochemical Society Transactions, 2000, 28, A80-A80.	3.4	0
190	Is the proteolytic processing of the prion protein autocatalytic?. Biochemical Society Transactions, 2000, 28, A80-A80.	3.4	0
191	Role of Cys43 and the C-terminal domain in the structure and function of murine Aminopeptidase A. Biochemical Society Transactions, 2000, 28, A81-A81.	3.4	Ο
192	Identification and Characterisation of a Novel Human Zinc Metalloprotease with Homology to Angiotensin Converting Enzyme. Biochemical Society Transactions, 2000, 28, A81-A81.	3.4	0
193	Cloning and characterisation of human cytosolic aminopeptidase P. Biochemical Society Transactions, 2000, 28, A84-A84.	3.4	Ο
194	The ectodomain of angiotensin converting enzyme does not dictate sensitivity to secretase cleavage. Biochemical Society Transactions, 2000, 28, A262-A262.	3.4	0
195	N-terminal anchorage of the prion protein results in a novel proteinase K resistant fragment. Biochemical Society Transactions, 2000, 28, A349-A349.	3.4	Ο
196	The juxtamembrane stalk region of angiotensin converting enzyme confers susceptibility to secretase cleavage. Biochemical Society Transactions, 2000, 28, A80-A80.	3.4	0
197	Insulin stimulates the release of a subset of GPI-anchored proteins in a G-protein independent manner. Molecular Membrane Biology, 2000, 17, 41-45.	2.0	6
198	Identification of Critical Residues in the Active Site of Porcine Membrane-Bound Aminopeptidase P. Biochemistry, 2000, 39, 15129-15135.	2.5	21

#	Article	IF	CITATIONS
199	Cloning, Expression, and Characterization of Human Cytosolic Aminopeptidase P:  A Single Manganese(II)-Dependent Enzyme. Biochemistry, 2000, 39, 15121-15128.	2.5	89
200	A Human Homolog of Angiotensin-converting Enzyme. Journal of Biological Chemistry, 2000, 275, 33238-33243.	3.4	1,804
201	The Role of Proteolysis in Alzheimer's Disease. , 2000, 477, 379-390.		35
202	Specific Localization of Membrane Dipeptidase and Dipeptidyl Peptidase IV in Secretion Granules of Two Different Pancreatic Islet Cells. Journal of Histochemistry and Cytochemistry, 1999, 47, 489-497.	2.5	21
203	A Continuous Fluorometric Assay for Leukotriene D4Hydrolase. Analytical Biochemistry, 1999, 268, 245-251.	2.4	12
204	Cleavage of Alzheimer's Amyloid Precursor Protein by α-Secretase Occurs at the Surface of Neuronal Cellsâ€. Biochemistry, 1999, 38, 9728-9734.	2.5	181
205	Proteolytic fragmentation of the murine prion protein: role of Tyr-128 and His-177. FEBS Letters, 1999, 463, 273-276.	2.8	10
206	Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae (Review). Molecular Membrane Biology, 1999, 16, 145-156.	2.0	363
207	Amyloid precursor protein, although partially detergent-insoluble in mouse cerebral cortex, behaves as an atypical lipid raft protein. Biochemical Journal, 1999, 344, 23-30.	3.7	108
208	Role for ADAM-family proteinases as membrane protein secretases. Biochemical Society Transactions, 1999, 27, 255-260.	3.4	57
209	Angiotensin converting enzyme and the amyloid precursor protein secretases. Biochemical Society Transactions, 1999, 27, A23-A23.	3.4	0
210	A role for ADAMs proteinases as membrane protein secretases. Biochemical Society Transactions, 1999, 27, A24-A24.	3.4	0
211	Insulin-Stimulated Release of GPI-Anchored Proteins. Biochemical Society Transactions, 1999, 27, A54-A54.	3.4	0
212	Proteolytic Fragmentation of Aminopeptidase N. Biochemical Society Transactions, 1999, 27, A54-A54.	3.4	0
213	Amyloid precursor protein, although partially detergent-insoluble in mouse cerebral cortex, behaves as an atypical lipid raft protein. Biochemical Journal, 1999, 344, 23.	3.7	35
214	Overview of the biological roles of metalloproteinases in health and disease. , 1999, , 145-161.		3
215	Purification of Proteases. , 1999, , 109-123.		0
216	Membrane biology: Do glycolipid microdomains really exist?. Current Biology, 1998, 8, R114-R116.	3.9	62

#	Article	IF	CITATIONS
217	The secretases that cleave angiotensin converting enzyme and the amyloid precursor protein are distinct from tumour necrosis factor- $\hat{l}\pm$ convertase. FEBS Letters, 1998, 431, 63-65.	2.8	49
218	Alzheimer's Amyloid Precursor Protein α-Secretase Is Inhibited by Hydroxamic Acid-Based Zinc Metalloprotease Inhibitors: Similarities to the Angiotensin Converting Enzyme Secretaseâ€. Biochemistry, 1998, 37, 1680-1685.	2.5	127
219	Membrane Dipeptidase in the Pig Exocrine Pancreas: Ultrastructural Localization and Secretion. Journal of Histochemistry and Cytochemistry, 1998, 46, 841-846.	2.5	1
220	40 Gly-(CSNH)-Phe resists hydrolysis by membrane dipeptidase. Biochemical Society Transactions, 1998, 26, S31-S31.	3.4	5
221	Detergent solubility and processing of the familial Alzheimer's disease-related presenilin proteins. Biochemical Society Transactions, 1998, 26, S241-S241.	3.4	1
222	The amyloid precursor protein (APP) and the angiotensin converting enzyme (ACE) secretase are inhibited by hydroxamic acid-based inhibitors. Biochemical Society Transactions, 1998, 26, S242-S242.	3.4	8
223	Molecular characterisation of the alzheimer's amyloid precursor protein secretases. Biochemical Society Transactions, 1998, 26, S245-S245.	3.4	1
224	The cloning and functional expression of human pancreatic aminopeptidase P. Biochemical Society Transactions, 1998, 26, S248-S248.	3.4	4
225	Characterization of Neuropeptidases Using Inhibitors. , 1997, 73, 369-382.		2
226	Membrane protein secretases. Biochemical Journal, 1997, 321, 265-279.	3.7	611
227	Identification of membrane dipeptidase as a major glycosyl-phosphatidylinositol-anchored protein of the pancreatic zymogen granule membrane, and evidence for its release by phospholipase A. Biochemical Journal, 1997, 324, 151-157.	3.7	31
228	Identification by site-directed mutagenesis of three essential histidine residues in membrane dipeptidase, a novel mammalian zinc peptidase. Biochemical Journal, 1997, 326, 47-51.	3.7	22
229	Insulin stimulates the release of the glycosyl phosphatidylinositol-anchored membrane dipeptidase from 3T3-L1 adipocytes through the action of a phospholipase C. Biochemical Journal, 1997, 326, 531-537.	3.7	59
230	Angiotensin-converting enzyme secretase is inhibited by zinc metalloprotease inhibitors and requires its substrate to be inserted in a lipid bilayer. Biochemical Journal, 1997, 327, 37-43.	3.7	59
231	Proteolytic Fragmentation Reveals the Oligomeric and Domain Structure of Porcine Aminopeptidase A,. Biochemistry, 1997, 36, 3000-3007.	2.5	30
232	Glycosyl-phosphatidylinositol anchored membrane enzymes. Clinica Chimica Acta, 1997, 266, 3-12.	1.1	90
233	Stable and temperature-sensitive transformation of baby rat kidney cells by SV40 suppresses expression of membrane dipeptidase. Oncogene, 1997, 15, 1241-1245.	5.9	9
234	The Amyloid Precursor Protein Is Not Enriched in Caveolae‣ike, Detergentâ€Insoluble Membrane Microdomains. Journal of Neurochemistry, 1997, 69, 2179-2188.	3.9	35

#	Article	IF	CITATIONS
235	Structural Studies of Aminopeptidase P. Advances in Experimental Medicine and Biology, 1997, 421, 7-16.	1.6	6
236	Inhibition and metal ion activation of pig kidney aminopeptidase P. Biochemical Pharmacology, 1996, 52, 229-236.	4.4	26
237	Site-Directed Mutagenesis of Conserved Cysteine Residues in Porcine Membrane Dipeptidase. Cys 361 Alone Is Involved in Disulfide-Linked Dimerizationâ€. Biochemistry, 1996, 35, 12511-12517.	2.5	28
238	Molecular cloning and expression in COS-1 cells of pig kidney aminopeptidase P. Biochemical Journal, 1996, 319, 197-201.	3.7	25
239	Isolation and characterization of two distinct low-density, Triton-insoluble, complexes from porcine lung membranes. Biochemical Journal, 1996, 319, 887-896.	3.7	61
240	A role for calcium and annexins in the formation of caveolae. Biochemical Society Transactions, 1996, 24, 444S-444S.	3.4	6
241	Cloning and functional expression of pig kidney aminopeptidase P. Biochemical Society Transactions, 1996, 24, 470S-470S.	3.4	1
242	Purification of GPI anchors by immunoaffinity chromatography. Biochemical Society Transactions, 1995, 23, 101S-101S.	3.4	0
243	Characterisation of porcine aminopeptidase A: a type II integral membrane protein. Biochemical Society Transactions, 1995, 23, 550S-550S.	3.4	1
244	Purification and characterization of the angiotensin converting enzyme secretase. Biochemical Society Transactions, 1995, 23, 551S-551S.	3.4	1
245	Identification of the site of cleavage in angiotensin converting enzyme by its secretase. Biochemical Society Transactions, 1995, 23, 552S-552S.	3.4	0
246	Specificity of the Alzheimer's amyloid precursor protein α-secretase. Trends in Biochemical Sciences, 1995, 20, 15-16.	7.5	7
247	Structures of the Glycosyl-phosphatidylinositol Anchors of Porcine and Human Renal Membrane Dipeptidase. Journal of Biological Chemistry, 1995, 270, 22946-22956.	3.4	117
248	Directed mutagenesis of pig renal membrane dipeptidase His219is critical but the DHXXH motif is not essential for zinc binding or catalytic activity. FEBS Letters, 1994, 349, 50-54.	2.8	22
249	Families of zinc metalloproteases. FEBS Letters, 1994, 354, 1-6.	2.8	699
250	Stability of N-Derivatized and .alphaMethyl Analogs of Aspartame to Hydrolysis by Mammalian Cell-Surface Peptidases. Journal of Agricultural and Food Chemistry, 1994, 42, 1397-1401.	5.2	6
251	Inhibition of two gluconeogenic enzymes by glycosyl-phosphatidylinositol: a model for insulin action. Biochemical Society Transactions, 1994, 22, 10S-10S.	3.4	4
252	Determination of mammalian membrane protein anchorage: Glycosyl-phosphatidylinositol (G-PI) or transmembrane polypeptide anchor. Biochemical Education, 1993, 21, 212-216.	0.1	25

#	Article	IF	CITATIONS
253	Subcellular fractionation studies indicate an intracellular localization for human monocyte specific esterase (MSE). British Journal of Haematology, 1993, 84, 608-614.	2.5	9
254	Mosaic expression of membrane peptidases by confluent cultures of Caco-2 cells. FEBS Letters, 1993, 317, 109-112.	2.8	23
255	Characterization of an antibody to the cross-reacting determinant of the glycosyl-phosphatidylinositol anchor of human membrane dipeptidase. Biochimica Et Biophysica Acta - Biomembranes, 1993, 1145, 212-218.	2.6	23
256	Structural determination of the glycolipid anchors of human and porcine membrane dipeptidases. Biochemical Society Transactions, 1993, 21, 46S-46S.	3.4	3
257	Aminopeptidase P: Immunoaffinity purification and molecular characterisation. Biochemical Society Transactions, 1993, 21, 236S-236S.	3.4	2
258	Inhibitor profile of porcine aminopeptidase W. Biochemical Society Transactions, 1993, 21, 250S-250S.	3.4	1
259	Characterization of the soluble and membrane-bound forms of porcine angiotensin converting enzyme. Biochemical Society Transactions, 1993, 21, 251S-251S.	3.4	1
260	Identification of the site of attachment of the glycolipid anchor in porcine membrane dipeptidase. Biochemical Society Transactions, 1993, 21, 44S-44S.	3.4	0
261	Investigation of glycolipid anchor addition using a synthetic peptide as substrate. Biochemical Society Transactions, 1993, 21, 45S-45S.	3.4	0
262	Membrane peptidase expression by confluent cultures of Caco-2 cells. Biochemical Society Transactions, 1993, 21, 252S-252S.	3.4	4
263	Ectopeptidases. Pharmaceutical Biotechnology, 1993, , 23-50.	0.3	6
264	Purification and characterisation of antibodies to the glycosylphosphatidylinositol anchor of human membrane dipeptidase. Biochemical Society Transactions, 1992, 20, 118S-118S.	3.4	2
265	Characterization of the post-translational release from membranes of angiotensin converting enzyme. Biochemical Society Transactions, 1992, 20, 253S-253S.	3.4	0
266	Immunological studies on the endothelial and testicular forms of angiotensin converting enzyme. Biochemical Society Transactions, 1992, 20, 281S-281S.	3.4	1
267	Inhibition of aminopeptidases N, A and W. Biochemical Pharmacology, 1992, 44, 1725-1730.	4.4	99
268	More than just a membrane anchor. Current Biology, 1992, 2, 617-619.	3.9	35
269	Characterization of Neuronal and Endothelial Forms of Angiotensin Converting Enzyme in Pig Brain. Journal of Neurochemistry, 1991, 57, 193-199.	3.9	36
270	Angiotensin converting enzyme: Implications from molecular biology for its physiological functions. International Journal of Biochemistry & Cell Biology, 1991, 23, 641-647.	0.5	142

#	Article	IF	CITATIONS
271	Characterization and isolation of the membrane anchor of angiotensin-converting enzyme. Biochemical Society Transactions, 1989, 17, 660-661.	3.4	5
272	Phosphatidylinositol-glycan-tailed membrane proteins: the biochemistry of glycolipid anchors. Biochemical Society Transactions, 1989, 17, 864-866.	3.4	7
273	Hydrolysis of the glycosyl-phosphatidylinositol anchors of renal microvillar peptidases by a plasma phospholipase D. Biochemical Society Transactions, 1989, 17, 885-886.	3.4	7
274	Ectoenzymes of the kidney microvillar membrane Aminopeptidase P is anchored by a glycosyl-phosphatidylinositol moiety. FEBS Letters, 1988, 229, 340-344.	2.8	112
275	Purification and Characterization of a Peptidyl Dipeptidase Resembling Angiotensin Converting Enzyme from the Electric Organ of Torpedo marmorata. Journal of Neurochemistry, 1987, 48, 910-916.	3.9	21
276	Neurokinin B is hydrolysed by synaptic membranes and by endopeptidase-24.11 (â€~enkephalinase') but not by angiotensin converting enzyme. FEBS Letters, 1985, 190, 133-136.	2.8	41