
## Isobel A P Parkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5175788/publications.pdf Version: 2024-02-01



ISOBEL & D. DADKIN

| #  | Article                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Visualization Tools for Genomic Conservation. Methods in Molecular Biology, 2022, 2443, 285-308.                                                                                                                                                                      | 0.9 | 9         |
| 2  | L-system models for image-based phenomics: case studies of maize and canola. In Silico Plants, 2022, 4, .                                                                                                                                                             | 1.9 | 9         |
| 3  | Longâ€read sequencing reveals widespread intragenic structural variants in a recent allopolyploid<br>crop plant. Plant Biotechnology Journal, 2021, 19, 240-250.                                                                                                      | 8.3 | 45        |
| 4  | A major quantitative trait locus on chromosome A9, <i>BnaPh1</i> , controls homoeologous recombination in <i>Brassica napus</i> . New Phytologist, 2021, 229, 3281-3293.                                                                                              | 7.3 | 35        |
| 5  | UAV-Based Hyperspectral Imaging Technique to Estimate Canola <i>(Brassica napus L.)</i> Seedpods<br>Maturity. Canadian Journal of Remote Sensing, 2021, 47, 33-47.                                                                                                    | 2.4 | 15        |
| 6  | Genome structural evolution in Brassica crops. Nature Plants, 2021, 7, 757-765.                                                                                                                                                                                       | 9.3 | 31        |
| 7  | Phenotyping Flowering in Canola (Brassica napus L.) and Estimating Seed Yield Using an Unmanned<br>Aerial Vehicle-Based Imagery. Frontiers in Plant Science, 2021, 12, 686332.                                                                                        | 3.6 | 11        |
| 8  | Deep neural networks for genomic prediction do not estimate marker effects. Plant Genome, 2021, 14, e20147.                                                                                                                                                           | 2.8 | 15        |
| 9  | Gene expression profiling reveals transcription factor networks and subgenome bias during Brassica<br>napus seed development. Plant Journal, 2021, 109, 477.                                                                                                          | 5.7 | 8         |
| 10 | Exploiting High-Throughput Indoor Phenotyping to Characterize the Founders of a Structured B.<br>napus Breeding Population. Frontiers in Plant Science, 2021, 12, 780250.                                                                                             | 3.6 | 3         |
| 11 | Characterization and Mapping of retr04, retr05 and retr06 Broad-Spectrum Resistances to Turnip<br>Mosaic Virus in Brassica juncea, and the Development of Robust Methods for Utilizing Recalcitrant<br>Genotyping Data. Frontiers in Plant Science, 2021, 12, 787354. | 3.6 | Ο         |
| 12 | Midâ€infrared spectroscopy is a fast screening method for selecting Arabidopsis genotypes with altered<br>leaf cuticular wax. Plant, Cell and Environment, 2020, 43, 662-674.                                                                                         | 5.7 | 12        |
| 13 | A high-contiguity Brassica nigra genome localizes active centromeres and defines the ancestral<br>Brassica genome. Nature Plants, 2020, 6, 929-941.                                                                                                                   | 9.3 | 94        |
| 14 | Characterization of B-Genome Specific High Copy hAT MITE Families in Brassica nigra Genome. Frontiers<br>in Plant Science, 2020, 11, 1104.                                                                                                                            | 3.6 | 1         |
| 15 | The <i>Brassica napus</i> wallâ€associated kinaseâ€ŀike (WAKL) gene <i>Rlm9</i> provides raceâ€specific<br>blackleg resistance. Plant Journal, 2020, 104, 892-900.                                                                                                    | 5.7 | 51        |
| 16 | Assessing Diversity in the <i>Camelina</i> Genus Provides Insights into the Genome Structure of <i>Camelina sativa</i> . G3: Genes, Genomes, Genetics, 2020, 10, 1297-1308.                                                                                           | 1.8 | 33        |
| 17 | Narrow genetic base shapes population structure and linkage disequilibrium in an industrial oilseed<br>crop, Brassica carinata A. Braun. Scientific Reports, 2020, 10, 12629.                                                                                         | 3.3 | 13        |
| 18 | Latent Space Phenotyping: Automatic Image-Based Phenotyping for Treatment Studies. Plant Phenomics,<br>2020, 2020, 5801869.                                                                                                                                           | 5.9 | 26        |

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | WheatCRISPR: a web-based guide RNA design tool for CRISPR/Cas9-mediated genome editing in wheat.<br>BMC Plant Biology, 2019, 19, 474.                                                                                                           | 3.6 | 34        |
| 20 | Genes associated with chloroplasts and hormone-signaling, and transcription factors other than<br>CBFs are associated with differential survival after low temperature treatments of Camelina sativa<br>biotypes. PLoS ONE, 2019, 14, e0217692. | 2.5 | 8         |
| 21 | Clubroot resistance gene Rcr6 in Brassica nigra resides in a genomic region homologous to chromosome A08 in B. rapa. BMC Plant Biology, 2019, 19, 224.                                                                                          | 3.6 | 32        |
| 22 | Field cress genome mapping: Integrating linkage and comparative maps with cytogenetic analysis for rDNA carrying chromosomes. Scientific Reports, 2019, 9, 17028.                                                                               | 3.3 | 5         |
| 23 | Connecting genome structural variation with complex traits in crop plants. Theoretical and Applied Genetics, 2019, 132, 733-750.                                                                                                                | 3.6 | 97        |
| 24 | Core and Differentially Abundant Bacterial Taxa in the Rhizosphere of Field Grown Brassica napus<br>Genotypes: Implications for Canola Breeding. Frontiers in Microbiology, 2019, 10, 3007.                                                     | 3.5 | 39        |
| 25 | Crop Lodging Prediction From UAV-Acquired Images of Wheat and Canola Using a DCNN Augmented<br>With Handcrafted Texture Features. , 2019, , .                                                                                                   |     | 34        |
| 26 | Classification of Crop Lodging with Gray Level Co-occurrence Matrix. , 2018, , .                                                                                                                                                                |     | 17        |
| 27 | Re-exploration of U's Triangle Brassica Species Based on Chloroplast Genomes and 45S nrDNA<br>Sequences. Scientific Reports, 2018, 8, 7353.                                                                                                     | 3.3 | 36        |
| 28 | Detecting de Novo Homoeologous Recombination Events in Cultivated Brassica napus Using a<br>Genome-Wide SNP Array. G3: Genes, Genomes, Genetics, 2018, 8, 2673-2683.                                                                            | 1.8 | 33        |
| 29 | Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid<br><i>Brassica napus</i> . Plant Biotechnology Journal, 2018, 16, 1265-1274.                                                                      | 8.3 | 217       |
| 30 | A user guide to the Brassica 60K Illumina Infiniumâ"¢ SNP genotyping array. Theoretical and Applied<br>Genetics, 2017, 130, 621-633.                                                                                                            | 3.6 | 90        |
| 31 | Mapping of homoeologous chromosome exchanges influencing quantitative trait variation in <i>Brassica napus</i> . Plant Biotechnology Journal, 2017, 15, 1478-1489.                                                                              | 8.3 | 93        |
| 32 | Korean Brassica oleracea germplasm offers a novel source of qualitative resistance to blackleg<br>disease. European Journal of Plant Pathology, 2017, 149, 611-623.                                                                             | 1.7 | 16        |
| 33 | Extensive homoeologous genome exchanges in allopolyploid crops revealed by<br><scp>mRNA</scp> seqâ€based visualization. Plant Biotechnology Journal, 2017, 15, 594-604.                                                                         | 8.3 | 96        |
| 34 | Agronomic and Seed Quality Traits Dissected by Genome-Wide Association Mapping in Brassica napus.<br>Frontiers in Plant Science, 2016, 7, 386.                                                                                                  | 3.6 | 78        |
| 35 | A high-density SNP genotyping array for Brassica napus and its ancestral diploid species based on optimised selection of single-locus markers in the allotetraploid genome. Theoretical and Applied Genetics, 2016, 129, 1887-1899.             | 3.6 | 205       |
| 36 | Co-linearity and divergence of the A subgenome of Brassica juncea compared with other Brassica species carrying different A subgenomes. BMC Genomics, 2016, 17, 18.                                                                             | 2.8 | 32        |

| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Multi-trait and multi-environment QTL analysis reveals the impact of seed colour on seed composition traits in Brassica napus. Molecular Breeding, 2016, 36, 1.                                                                      | 2.1  | 11        |
| 38 | The developmental transcriptome atlas of the biofuel crop <i>Camelina sativa</i> . Plant Journal, 2016, 88, 879-894.                                                                                                                 | 5.7  | 60        |
| 39 | The pangenome of an agronomically important crop plant Brassica oleracea. Nature Communications, 2016, 7, 13390.                                                                                                                     | 12.8 | 375       |
| 40 | The compact genome of the plant pathogen Plasmodiophora brassicae is adapted to intracellular interactions with host Brassica spp. BMC Genomics, 2016, 17, 272.                                                                      | 2.8  | 107       |
| 41 | Microsatellite markers used for genome-wide association mapping of partial resistance to Sclerotinia sclerotiorum in a world collection of Brassica napus. Molecular Breeding, 2016, 36, 72.                                         | 2.1  | 64        |
| 42 | Hairy Canola (Brasssica napus) re-visited: Down-regulating TTG1 in an AtGL3-enhanced hairy leaf<br>background improves growth, leaf trichome coverage, and metabolite gene expression diversity. BMC<br>Plant Biology, 2016, 16, 12. | 3.6  | 18        |
| 43 | Analysis of Genotyping-by-Sequencing (GBS) Data. Methods in Molecular Biology, 2016, 1374, 269-284.                                                                                                                                  | 0.9  | 6         |
| 44 | Centromere Locations in <i>Brassica</i> A and C Genomes Revealed Through Half-Tetrad Analysis.<br>Genetics, 2016, 202, 513-523.                                                                                                      | 2.9  | 47        |
| 45 | Single-nucleotide polymorphism identification and genotyping in Camelina sativa. Molecular Breeding, 2015, 35, 35.                                                                                                                   | 2.1  | 36        |
| 46 | Association mapping of seed quality traits in Brassica napus L. using GWAS and candidate QTL approaches. Molecular Breeding, 2015, 35, 1.                                                                                            | 2.1  | 51        |
| 47 | Quantitative and structural analyses of T-DNA tandem repeats in transgenic Arabidopsis SK mutant<br>lines. Plant Cell, Tissue and Organ Culture, 2015, 123, 183-192.                                                                 | 2.3  | 7         |
| 48 | Construction of Brassica A and C genome-based ordered pan-transcriptomes for use in rapeseed genomic research. Data in Brief, 2015, 4, 357-362.                                                                                      | 1.0  | 58        |
| 49 | Comparison of Five Major Trichome Regulatory Genes in Brassica villosa with Orthologues within the<br>Brassicaceae. PLoS ONE, 2014, 9, e95877.                                                                                       | 2.5  | 8         |
| 50 | Species- and genome-wide dissection of the shoot ionome in Brassica napus and its relationship to seedling development. Frontiers in Plant Science, 2014, 5, 485.                                                                    | 3.6  | 35        |
| 51 | High-density single nucleotide polymorphism (SNP) array mapping in Brassica oleracea: identification of QTL associated with carotenoid variation in broccoli florets. Theoretical and Applied Genetics, 2014, 127, 2051-2064.        | 3.6  | 30        |
| 52 | Molecular cytogenetic identification of B genome chromosomes linked to blackleg disease resistance<br>in Brassica napusÂ×ÂB.Âcarinata interspecific hybrids. Theoretical and Applied Genetics, 2014, 127, 1305-1318.                 | 3.6  | 49        |
| 53 | Early allopolyploid evolution in the post-Neolithic <i>Brassica napus</i> oilseed genome. Science, 2014, 345, 950-953.                                                                                                               | 12.6 | 2,089     |
| 54 | Polyploid Evolution of the Brassicaceae during the Cenozoic Era  Â. Plant Cell, 2014, 26, 2777-2791.                                                                                                                                 | 6.6  | 165       |

| #  | Article                                                                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nature Communications, 2014, 5, 3930.                                                                                                                                                                                     | 12.8 | 918       |
| 56 | The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure. Nature Communications, 2014, 5, 3706.                                                                                                                                                                   | 12.8 | 295       |
| 57 | Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid<br>Brassica oleracea. Genome Biology, 2014, 15, R77.                                                                                                                                                              | 9.6  | 456       |
| 58 | Genome-Wide Delineation of Natural Variation for Pod Shatter Resistance in Brassica napus. PLoS<br>ONE, 2014, 9, e101673.                                                                                                                                                                                       | 2.5  | 182       |
| 59 | Genetic Diversity and Population Structure in a World Collection of <i>Brassica napus</i> Accessions with Emphasis on South Korea, Japan, and Pakistan. Crop Science, 2013, 53, 1537-1545.                                                                                                                      | 1.8  | 30        |
| 60 | Arabidopsis cpSRP54 regulates carotenoid accumulation in Arabidopsis and Brassica napus. Journal of<br>Experimental Botany, 2012, 63, 5189-5202.                                                                                                                                                                | 4.8  | 28        |
| 61 | Monolignol biosynthesis is associated with resistance to <i>Sclerotinia sclerotiorum</i> in <i>Camelina sativa</i> . Molecular Plant Pathology, 2012, 13, 887-899.                                                                                                                                              | 4.2  | 81        |
| 62 | Revised Selection Criteria for Candidate Restriction Enzymes in Genome Walking. PLoS ONE, 2012, 7, e35117.                                                                                                                                                                                                      | 2.5  | 12        |
| 63 | The <i>Arabidopsis tt19â€4</i> mutant differentially accumulates proanthocyanidin and anthocyanin<br>through a 3′ amino acid substitution in glutathione <i>S</i> â€ŧransferase. Plant, Cell and Environment,<br>2011, 34, 374-388.                                                                             | 5.7  | 43        |
| 64 | The genome of the mesopolyploid crop species Brassica rapa. Nature Genetics, 2011, 43, 1035-1039.                                                                                                                                                                                                               | 21.4 | 1,893     |
| 65 | Analysis of B-Genome Chromosome Introgression in Interspecific Hybrids of <i>Brassica napus</i> ×<br><i>B. carinata</i> . Genetics, 2011, 187, 659-673.                                                                                                                                                         | 2.9  | 48        |
| 66 | saskPrimer — An automated pipeline for design of intron-spanning PCR primers in non-model organisms. , 2011, , .                                                                                                                                                                                                |      | 0         |
| 67 | A new dominant Arabidopsis transparent testa mutant, sk21-D, and modulation of seed flavonoid biosynthesis by KAN4. Plant Biotechnology Journal, 2010, 8, 979-993.                                                                                                                                              | 8.3  | 22        |
| 68 | Towards unambiguous transcript mapping in the allotetraploid Brassica napusThis article is one of a selection of papers from the conference "Exploiting Genome-wide Association in Oilseed Brassicas: a model for genetic improvement of major OECD crops for sustainable farmingâ€. Genome, 2010, 53, 929-938. | 2.0  | 44        |
| 69 | Forward and reverse genetics of rapid-cycling Brassica oleracea. Theoretical and Applied Genetics, 2009, 118, 953-961.                                                                                                                                                                                          | 3.6  | 57        |
| 70 | Brassica napus possesses an expanded set of polygalacturonase inhibitor protein genes that are<br>differentially regulated in response to Sclerotinia sclerotiorum infection, wounding and defense<br>hormone treatment. Planta, 2008, 228, 241-253.                                                            | 3.2  | 45        |
| 71 | Comparative genome organization reveals a single copy of CBF in the freezing tolerant crucifer<br>Thlaspi arvense. Plant Molecular Biology, 2007, 65, 693-705.                                                                                                                                                  | 3.9  | 13        |
| 72 | Exploiting the wild crucifer Thlaspi arvense to identify conserved and novel genes expressed during a plant's response to cold stress. Plant Molecular Biology, 2006, 63, 171-184.                                                                                                                              | 3.9  | 47        |

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Complexities of Chromosome Landing in a Highly Duplicated Genome: Toward Map-Based Cloning of a<br>Gene Controlling Blackleg Resistance in Brassica napus. Genetics, 2005, 171, 1977-1988. | 2.9 | 80        |
| 74 | Segmental Structure of the <i>Brassica napus</i> Genome Based on Comparative Analysis With <i>Arabidopsis thaliana</i> . Genetics, 2005, 171, 765-781.                                     | 2.9 | 516       |
| 75 | Maximizing the Efficacy of SAGE Analysis Identifies Novel Transcripts in Arabidopsis. Plant Physiology, 2004, 136, 3223-3233.                                                              | 4.8 | 35        |
| 76 | An auxin-responsive SCARECROW-like transcriptional activator interacts with histone deacetylase.<br>Plant Molecular Biology, 2004, 55, 417-431.                                            | 3.9 | 78        |
| 77 | Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Molecular Biology, 2003, 53, 383-397.           | 3.9 | 271       |
| 78 | A novel protein from Brassica napus has a putative KID domain and responds to low temperature. Plant<br>Journal, 2003, 33, 1073-1086.                                                      | 5.7 | 30        |
| 79 | Comparison of a <i>Brassica oleracea</i> Genetic Map With the Genome of <i>Arabidopsis thaliana</i> .<br>Genetics, 2003, 164, 359-372.                                                     | 2.9 | 139       |
| 80 | Detection and Effects of a Homeologous Reciprocal Transposition in <i>Brassica napus</i> . Genetics, 2003, 165, 1569-1577.                                                                 | 2.9 | 131       |
| 81 | PCP-A1, a Defensin-like Brassica Pollen Coat Protein That Binds the S Locus Glycoprotein, Is the Product of Gametophytic Gene Expression. Plant Cell, 1998, 10, 1333-1347.                 | 6.6 | 166       |
| 82 | Mapping the Brassica Genome. Outlook on Agriculture, 1993, 22, 85-92.                                                                                                                      | 3.4 | 45        |