Regis Ferriere

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5175131/publications.pdf

Version: 2024-02-01

81900 95266 5,217 89 39 68 citations g-index h-index papers 95 95 95 6213 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Topological acoustic sensing of ground stiffness: Presenting a potential means of sensing warming permafrost in a forest. Cold Regions Science and Technology, 2022, 199, 103569.	3.5	2
2	Coevolutionary transitions from antagonism to mutualism explained by the Co-Opted Antagonist Hypothesis. Nature Communications, 2021, 12, 2867.	12.8	15
3	Bayesian analysis of Enceladus's plume data to assess methanogenesis. Nature Astronomy, 2021, 5, 805-814.	10.1	29
4	Looking for the -scape in the sound: Discriminating soundscapes categories in the Sonoran Desert using indices and clustering. Ecological Indicators, 2021, 127, 107805.	6.3	5
5	Chapitre 13. L'évolution de la coopération. , 2021, , 407-440.		O
6	A multi-scale eco-evolutionary model of cooperation reveals how microbial adaptation influences soil decomposition. Communications Biology, 2020, 3, 520.	4.4	7
7	Characterizing amplitude and frequency modulation cues in natural soundscapes: A pilot study on four habitats of a biosphere reserve. Journal of the Acoustical Society of America, 2020, 147, 3260-3274.	1.1	9
8	Interactions among interactions: The dynamical consequences of antagonism between mutualists. Journal of Theoretical Biology, 2020, 501, 110334.	1.7	1
9	Co-evolution of primitive methane-cycling ecosystems and early Earth's atmosphere and climate. Nature Communications, 2020, 11, 2705.	12.8	28
10	Topological acoustic sensing of spatial patterns of trees in a model forest landscape. Ecological Modelling, 2020, 419, 108964.	2.5	6
11	Biotic soil-plant interaction processes explain most of hysteretic soil CO2 efflux response to temperature in cross-factorial mesocosm experiment. Scientific Reports, 2020, 10, 905.	3.3	9
12	Local adaptation, dispersal evolution, and the spatial ecoâ€evolutionary dynamics of invasion. Ecology Letters, 2019, 22, 767-777.	6.4	32
13	Clade diversification dynamics and the biotic and abiotic controls of speciation and extinction rates. Nature Communications, 2018, 9, 3013.	12.8	54
14	The effect of competition and horizontal trait inheritance on invasion, fixation, and polymorphism. Journal of Theoretical Biology, 2016, 411, 48-58.	1.7	12
15	Ecoâ€evolutionary feedbacks between private and public goods: evidence from toxic algal blooms. Ecology Letters, 2016, 19, 81-97.	6.4	32
16	The Landscape Evolution Observatory: A large-scale controllable infrastructure to study coupled Earth-surface processes. Geomorphology, 2015, 244, 190-203.	2.6	47
17	Stochastic dynamics of adaptive trait and neutral marker driven by eco-evolutionary feedbacks. Journal of Mathematical Biology, 2015, 71, 1211-1242.	1.9	8
18	How Ecology and Landscape Dynamics Shape Phylogenetic Trees. Systematic Biology, 2015, 64, 590-607.	5.6	37

#	Article	IF	Citations
19	Do Eco-Evo Feedbacks Help Us Understand Nature? Answers From Studies of the Trinidadian Guppy. Advances in Ecological Research, 2014, , 1-40.	2.7	69
20	Ecological Models for Gene Therapy. II. Niche Construction, Nongenetic Inheritance, and Ecosystem Perturbations. Biological Theory, 2014, 9, 414-422.	1.5	1
21	Climate and Atmosphere Simulator for Experiments on Ecological Systems in Changing Environments. Environmental Science & Envir	10.0	18
22	Intermittent breeding and the dynamics of resource allocation to reproduction, growth and survival. Functional Ecology, 2013, 27, 173-183.	3.6	25
23	Eco-evolutionary feedbacks, adaptive dynamics and evolutionary rescue theory. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120081.	4.0	111
24	Evolutionary rescue: an emerging focus at the intersection between ecology and evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120404.	4.0	306
25	Evolving ecological networks and the emergence of biodiversity patterns across temperature gradients. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1051-1060.	2.6	40
26	Eco-Evolutionary Community Dynamics: Covariation between Diversity and Invasibility across Temperature Gradients. American Naturalist, 2012, 180, E110-E126.	2.1	9
27	Direct and Indirect Ecosystem Effects of Evolutionary Adaptation in the Trinidadian Guppy (<i>Poecilia) Tj ETQq1</i>	1 0.7843 2.1	14 _{gg} BT /Ove
28	Widespread intraspecific organismal stoichiometry among populations of the Trinidadian guppy. Functional Ecology, 2012, 26, 666-676.	3.6	83
29	The fundamental role of competition in the ecology and evolution of mutualisms. Annals of the New York Academy of Sciences, 2012, 1256, 66-88.	3.8	79
30	Inclusive fitness theory and eusociality. Nature, 2011, 471, E1-E4.	27.8	339
31	Inclusive fitness in evolution. Nature, 2011, 471, E6-E8.	27.8	44
32	A UNIFIED MODEL FOR THE COEVOLUTION OF RESISTANCE, TOLERANCE, AND VIRULENCE. Evolution; International Journal of Organic Evolution, 2010, 64, no-no.	2.3	53
33	Cohort variation in offspring growth and survival: prenatal and postnatal factors in a lateâ€maturing viviparous snake. Journal of Animal Ecology, 2010, 79, 640-649.	2.8	32
34	Chaotic Red Queen coevolution in three-species food chains. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2321-2330.	2.6	41
35	Stochastic and deterministic models for age-structured populations with genetically variable traits. ESAIM: Proceedings and Surveys, 2009, 27, 289-310.	0.4	18
36	Advancing the metabolic theory of biodiversity. Ecology Letters, 2009, 12, 1001-1015.	6.4	68

3

#	Article	IF	Citations
37	Ecoâ€Evolutionary Dynamics of Mutualists and Exploiters. American Naturalist, 2009, 174, 780-794.	2.1	66
38	Climate warming, dispersal inhibition and extinction risk. Global Change Biology, 2008, 14, 461-469.	9.5	112
39	From Individual Stochastic Processes to Macroscopic Models in Adaptive Evolution. Stochastic Models, 2008, 24, 2-44.	0.5	88
40	Reproductive Flexibility: Genetic Variation, Genetic Costs and Long-Term Evolution in a Collembola. PLoS ONE, 2008, 3, e3207.	2.5	43
41	Bet Hedging via Seed Banking in Desert Evening Primroses (Oenothera, Onagraceae): Demographic Evidence from Natural Populations. American Naturalist, 2007, 169, 184-194.	2.1	83
42	Evolution and persistence of obligate mutualists and exploiters: competition for partners and evolutionary immunization. Ecology Letters, 2007, 10, 115-126.	6.4	92
43	Individual-Based Probabilistic Models of Adaptive Evolution and Various Scaling Approximations. Progress in Probability, 2007, , 75-113.	0.3	19
44	Unifying evolutionary dynamics: From individual stochastic processes to macroscopic models. Theoretical Population Biology, 2006, 69, 297-321.	1.1	347
45	Timescales of population rarity and commonness in random environments. Theoretical Population Biology, 2006, 69, 351-366.	1.1	5
46	Two major evolutionary lineages revealed by molecular phylogeny in the parthenogenetic collembola species Folsomia candida. Pedobiologia, 2006, 50, 95-104.	1.2	41
47	Coevolution of slow–fast populations: evolutionary sliding, evolutionary pseudo-equilibria and complex Red Queen dynamics. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 983-990.	2.6	76
48	Effect of patch occupancy on immigration in the common lizard. Journal of Animal Ecology, 2005, 74, 241-249.	2.8	41
49	Functional response: rigorous estimation and sensitivity to genetic variation in prey. Oikos, 2005, 111, 479-487.	2.7	36
50	THE ANALYSIS OF REACTION NORMS FOR AGE AND SIZE AT MATURITY USING MATURATION RATE MODELS. Evolution; International Journal of Organic Evolution, 2005, 59, 500-506.	2.3	24
51	Juvenile growth and survival under dietary restriction: are males and females equal?. Oikos, 2005, 111, 368-376.	2.7	40
52	THE ANALYSIS OF REACTION NORMS FOR AGE AND SIZE AT MATURITY USING MATURATION RATE MODELS. Evolution; International Journal of Organic Evolution, 2005, 59, 500.	2.3	10
53	Adaptive Evolution of Social Traits: Origin, Trajectories, and Correlations of Altruism and Mobility. American Naturalist, 2005, 165, 206-224.	2.1	120
54	Sex ratio bias, male aggression, and population collapse in lizards. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18231-18236.	7.1	344

#	Article	IF	Citations
55	Quantitative-Genetic Models and Changing Environments. , 2004, , 171-187.		26
56	Fixation of New Mutations in Small Populations. , 2004, , 155-170.		26
57	Adaptive Dynamics and Evolving Biodiversity. , 2004, , 188-224.		53
58	Genetic Structure in Heterogeneous Environments. , 2004, , 229-243.		5
59	Adaptive Responses to Landscape Disturbances: Theory. , 2004, , 265-283.		7
60	Coevolutionary Dynamics and the Conservation of Mutualisms. , 2004, , 305-326.		37
61	Conservation Implications of Niche Conservatism and Evolution in Heterogeneous Environments. , 2004, , 244-264.		45
62	The effect of autocorrelation in environmental variability on the persistence of populations: an experimental test. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 2143-2148.	2.6	50
63	Physical performance and darwinian fitness in lizards. Nature, 2004, 432, 502-505.	27.8	186
64	THE ADAPTIVE DYNAMICS OF ALTRUISM IN SPATIALLY HETEROGENEOUS POPULATIONS. Evolution; International Journal of Organic Evolution, 2003, 57, 1-17.	2.3	132
65	Conservation and control strategies for the wolf (Canis lupus) in western Europe based on demographic models. Comptes Rendus - Biologies, 2003, 326, 575-587.	0.2	33
66	Mother–offspring interactions affect natal dispersal in a lizard. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1163-1169.	2.6	97
67	THE ADAPTIVE DYNAMICS OF ALTRUISM IN SPATIALLY HETEROGENEOUS POPULATIONS. Evolution; International Journal of Organic Evolution, 2003, 57, 1.	2.3	21
68	The Evolution of Dispersal under Demographic Stochasticity. American Naturalist, 2003, 162, 427-441.	2.1	93
69	ECOLOGICAL BISTABILITY AND EVOLUTIONARY REVERSALS UNDER ASYMMETRICAL COMPETITION. Evolution; International Journal of Organic Evolution, 2002, 56, 1081.	2.3	3
70	Cheating and the evolutionary stability of mutualisms. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 773-780.	2.6	234
71	Consequences of Plant-Herbivore Coevolution on the Dynamics and Functioning of Ecosystems. Journal of Theoretical Biology, 2002, 217, 369-381.	1.7	42
72	ECOLOGICAL BISTABILITY AND EVOLUTIONARY REVERSALS UNDER ASYMMETRICAL COMPETITION. Evolution; International Journal of Organic Evolution, 2002, 56, 1081-1090.	2.3	59

#	Article	IF	Citations
73	Estimating effects of adult male mortality on grizzly bear population growth and persistence using matrix models. Biological Conservation, 2001, 98, 293-303.	4.1	61
74	On Mutualists and Exploiters: Plant–insect Coevolution in Pollinating Seed–parasite Systems. Journal of Theoretical Biology, 2001, 212, 373-389.	1.7	53
75	BIFURCATIONS ANALYSIS OF POPULATION INVASION: ON–OFF INTERMITTENCY AND BASIN RIDDLING. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2000, 10, 443-452.	1.7	15
76	Evolving dispersal: where to go next?. Trends in Ecology and Evolution, 2000, 15, 5-7.	8.7	56
77	Predictability, chaos and coordination in bird vigilant behaviour. Animal Behaviour, 1999, 57, 497-500.	1.9	11
78	UNIVERSAL POWER LAWS GOVERN INTERMITTENT RARITY IN COMMUNITIES OF INTERACTING SPECIES. Ecology, 1999, 80, 1505-1521.	3.2	44
79	Universal Power Laws Govern Intermittent Rarity in Communities of Interacting Species. Ecology, 1999, 80, 1505.	3.2	6
80	Help and you shall be helped. Nature, 1998, 393, 517-519.	27.8	19
81	The Evolution of Cooperation in Spatially Heterogeneous Populations. American Naturalist, 1996, 147, 692-717.	2.1	60
82	Predictability and chaos in bird vigilant behaviour. Animal Behaviour, 1996, 52, 457-472.	1.9	27
83	Lyapunov Exponents and the Mathematics of Invasion in Oscillatory or Chaotic Populations. Theoretical Population Biology, 1995, 48, 126-171.	1.1	142
84	Invading wave of cooperation in a spatial iterated prisoner's dilemma. Proceedings of the Royal Society B: Biological Sciences, 1995, 259, 77-83.	2.6	36
85	Chaos and evolution. Trends in Ecology and Evolution, 1995, 10, 480-485.	8.7	62
86	Chaotic population dynamics can result from natural selection. Proceedings of the Royal Society B: Biological Sciences, 1993, 251, 33-38.	2.6	54
87	Evolutionarily stable age at first reproduction in a density-dependent model. Journal of Theoretical Biology, 1992, 157, 253-267.	1.7	24
88	How predictable is chaos?. Nature, 1992, 355, 25-26.	27.8	43
89	Observations préliminaires sur la morphologie de Vipera aspis (Linnaeus, 1758) dans le Sud-Est de la France. Amphibia - Reptilia, 1987, 8, 289-294.	0.5	2