
Ruben Vidal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5173612/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structures of filaments from Pick's disease reveal a novel tau protein fold. Nature, 2018, 561, 137-140.	27.8	625
2	Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature, 2019, 568, 420-423.	27.8	528
3	A stop-codon mutation in the BRI gene associated with familial British dementia. Nature, 1999, 399, 776-781.	27.8	467
4	Structure-based classification of tauopathies. Nature, 2021, 598, 359-363.	27.8	409
5	Novel tau filament fold in corticobasal degeneration. Nature, 2020, 580, 283-287.	27.8	381
6	Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1146-55.	7.1	318
7	A decamer duplication in the 3′ region of the <i>BRI</i> gene originates an amyloid peptide that is associated with dementia in a Danish kindred. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 4920-4925.	7.1	289
8	Tau filaments from multiple cases of sporadic and inherited Alzheimer's disease adopt a common fold. Acta Neuropathologica, 2018, 136, 699-708.	7.7	252
9	Cryo-EM structures of amyloid- $\hat{1}^2$ 42 filaments from human brains. Science, 2022, 375, 167-172.	12.6	228
10	Lipidation of apolipoprotein E influences its isoform-specific interaction with Alzheimer's amyloid β peptides. Biochemical Journal, 2000, 348, 359-365.	3.7	219
11	Endogenous Proteolytic Cleavage of Normal and Disease-Associated Isoforms of the Human Prion Protein in Neural and Non-Neural Tissues. American Journal of Pathology, 1998, 153, 1561-1572.	3.8	165
12	Intracellular Ferritin Accumulation in Neural and Extraneural Tissue Characterizes a Neurodegenerative Disease Associated with a Mutation in the <i>Ferritin Light Polypeptide</i> Gene. Journal of Neuropathology and Experimental Neurology, 2004, 63, 363-380.	1.7	149
13	Amino-Terminally Truncated Aβ Peptide Species Are the Main Component of Cotton Wool Plaques. Biochemistry, 2005, 44, 10810-10821.	2.5	131
14	Regional Distribution of Amyloid-Bri Deposition and Its Association with Neurofibrillary Degeneration in Familial British Dementia. American Journal of Pathology, 2001, 158, 515-526.	3.8	127
15	Familial Danish Dementia: A Novel Form of Cerebral Amyloidosis Associated with Deposition of Both Amyloid-Dan and Amyloid-Beta. Journal of Neuropathology and Experimental Neurology, 2002, 61, 254-267.	1.7	116
16	Expression of a Mutant Form of the Ferritin Light Chain Gene Induces Neurodegeneration and Iron Overload in Transgenic Mice. Journal of Neuroscience, 2008, 28, 60-67.	3.6	115
17	Cryo-EM structures of tau filaments from Alzheimer's disease with PET ligand APN-1607. Acta Neuropathologica, 2021, 141, 697-708.	7.7	99
18	Iron, Ferritin, Hereditary Ferritinopathy, and Neurodegeneration. Frontiers in Neuroscience, 2019, 13, 1195.	2.8	95

#	Article	IF	CITATIONS
19	Amyloid and Nonfibrillar Deposits in Mice Transgenic for Wild-Type Human Transthyretin: A Possible Model for Senile Systemic Amyloidosis. Laboratory Investigation, 2001, 81, 385-396.	3.7	90
20	Age-dependent formation of TMEM106B amyloid filaments in human brains. Nature, 2022, 605, 310-314.	27.8	88
21	PRP27–30Is a Normal Soluble Prion Protein Fragment Released by Human Platelets. Biochemical and Biophysical Research Communications, 1996, 223, 572-577.	2.1	86
22	Lipidation of apolipoprotein E influences its isoform-specific interaction with Alzheimer's amyloid β peptides. Biochemical Journal, 2000, 348, 359.	3.7	78
23	Senile dementia associated with amyloid β protein angiopathy and tau perivascular pathology but not neuritic plaques in patients homozygous for the APOE-ε4 allele. Acta Neuropathologica, 2000, 100, 1-12.	7.7	74
24	Systemic Amyloid Deposits in Familial British Dementia. Journal of Biological Chemistry, 2001, 276, 43909-43914.	3.4	73
25	Abnormal iron metabolism and oxidative stress in mice expressing a mutant form of the ferritin light polypeptide gene. Journal of Neurochemistry, 2009, 109, 1067-1078.	3.9	66
26	Kappa light chain-associated Fanconi's syndrome: molecular analysis of monoclonal immunoglobulin light chains from patients with and without intracellular crystals. Protein Engineering, Design and Selection, 1999, 12, 363-369.	2.1	58
27	Histopathological and molecular heterogeneity among individuals with dementia associated with Presenilin mutations. Molecular Neurodegeneration, 2008, 3, 20.	10.8	55
28	Memory Deficits Due to Familial British Dementia <i>BRI2</i> Mutation Are Caused by Loss of <i>BRI2</i> Function Rather than Amyloidosis. Journal of Neuroscience, 2010, 30, 14915-14924.	3.6	52
29	Sequence, genomic structure and tissue expression of Human BRI 3 , a member of the BRI gene family. Gene, 2001, 266, 95-102.	2.2	50
30	Axonal transport of British and Danish amyloid peptides via secretory vesicles. FASEB Journal, 2004, 18, 1-18.	0.5	48
31	Abnormal iron homeostasis and neurodegeneration. Frontiers in Aging Neuroscience, 2013, 5, 32.	3.4	48
32	Evidence for lymphatic Aβ clearance in Alzheimer's transgenic mice. Neurobiology of Disease, 2014, 71, 215-219.	4.4	48
33	Cerebral Amyloid Angiopathy and Parenchymal Amyloid Deposition in Transgenic Mice Expressing the Danish Mutant Form of Human BRI ₂ . Brain Pathology, 2009, 19, 58-68.	4.1	47
34	Systemic and Cerebral Iron Homeostasis in Ferritin Knock-Out Mice. PLoS ONE, 2015, 10, e0117435.	2.5	46
35	Modeling familial British and Danish dementia. Brain Structure and Function, 2010, 214, 235-244.	2.3	45
36	Structure of Tau filaments in Prion protein amyloidoses. Acta Neuropathologica, 2021, 142, 227-241.	7.7	45

#	Article	IF	CITATIONS
37	Iron-mediated Aggregation and a Localized Structural Change Characterize Ferritin from a Mutant Light Chain Polypeptide That Causes Neurodegeneration. Journal of Biological Chemistry, 2008, 283, 31679-31689.	3.4	44
38	Unraveling of the E-helices and Disruption of 4-Fold Pores Are Associated with Iron Mishandling in a Mutant Ferritin Causing Neurodegeneration. Journal of Biological Chemistry, 2010, 285, 1950-1956.	3.4	44
39	Accumulation of oxidative DNA damage in brain mitochondria in mouse model of hereditary ferritinopathy. Neuroscience Letters, 2010, 479, 44-48.	2.1	41
40	A mutant light-chain ferritin that causes neurodegeneration has enhanced propensity toward oxidative damage. Free Radical Biology and Medicine, 2012, 52, 1692-1697.	2.9	38
41	Melatonin Treatment Enhances Aβ Lymphatic Clearance in a Transgenic Mouse Model of Amyloidosis. Current Alzheimer Research, 2018, 15, 637-642.	1.4	38
42	A1 reactive astrocytes and a loss of TREM2 are associated with an early stage of pathology in a mouse model of cerebral amyloid angiopathy. Journal of Neuroinflammation, 2020, 17, 223.	7.2	36
43	Fibrillary glomerulonephritis related to serum fibrillar immunoglobulin-fibronectin complexes. American Journal of Kidney Diseases, 1996, 28, 676-684.	1.9	34
44	Hereditary ferritinopathy. Journal of the Neurological Sciences, 2003, 207, 110-111.	0.6	34
45	Neurodegeneration Caused by Proteins with an Aberrant Carboxyl-Terminus. Journal of Neuropathology and Experimental Neurology, 2004, 63, 787-800.	1.7	34
46	Immunolocalization of the Oligodendrocyte Transcription Factor 1 (Olig1) in Brain Tumors. Journal of Neuropathology and Experimental Neurology, 2004, 63, 170-179.	1.7	32
47	Generation and Initial Characterization of FDD Knock In Mice. PLoS ONE, 2009, 4, e7900.	2.5	32
48	Cryo-EM structures of prion protein filaments from Gerstmann–StrÃ ¤ ssler–Scheinker disease. Acta Neuropathologica, 2022, 144, 509-520.	7.7	32
49	pH-dependent fibrillogenesis of a VκIII Bence Jones protein. British Journal of Haematology, 1999, 107, 835-843.	2.5	31
50	Clinical phenotype and neuroimaging findings in a French family with hereditary ferritinopathy (FTL498â€499InsTC). Movement Disorders, 2009, 24, 1676-1683.	3.9	30
51	Iron loading-induced aggregation and reduction of iron incorporation in heteropolymeric ferritin containing a mutant light chain that causes neurodegeneration. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 544-548.	3.8	30
52	Inclusion body myositis, muscle blood vessel and cardiac amyloidosis, and transthyretin Val122Ile allele. Annals of Neurology, 2000, 47, 544-549.	5.3	29
53	Chromosome 13 dementia syndromes as models of neurodegeneration. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2001, 8, 277-284.	3.0	29
54	The Human Amyloid-β Precursor Protein770 Mutation V717F Generates Peptides Longer Than Amyloid-β-(40-42) and Flocculent Amyloid Aggregates. Journal of Biological Chemistry, 2004, 279, 5829-5836.	3.4	28

#	Article	IF	CITATIONS
55	Abnormal iron metabolism in fibroblasts from a patient with the neurodegenerative disease hereditary ferritinopathy. Molecular Neurodegeneration, 2010, 5, 50.	10.8	27
56	Earlyâ€onset Dementia with Lewy Bodies. Brain Pathology, 2004, 14, 137-147.	4.1	26
57	A Newly Formed Amyloidogenic Fragment due to a Stop Codon Mutation Causes Familial British Dementia. Annals of the New York Academy of Sciences, 2000, 903, 129-137.	3.8	25
58	Tau as a mediator of neurotoxicity associated to cerebral amyloid angiopathy. Acta Neuropathologica Communications, 2019, 7, 26.	5.2	25
59	Presenilin-1 280Glu→Ala Mutation Alters C-Terminal APP Processing Yielding Longer Aβ Peptides: Implications for Alzheimer's Disease. Molecular Medicine, 2008, 14, 184-194.	4.4	24
60	Effect of Systemic Iron Overload and a Chelation Therapy in a Mouse Model of the Neurodegenerative Disease Hereditary Ferritinopathy. PLoS ONE, 2016, 11, e0161341.	2.5	24
61	A Human Monoclonal IgG That Binds Aβ Assemblies and Diverse Amyloids Exhibits Anti-Amyloid Activities <i>In Vitro</i> and <i>In Vivo</i> . Journal of Neuroscience, 2015, 35, 6265-6276.	3.6	23
62	A novel ferritin light chain mutation in neuroferritinopathy with an atypical presentation. Journal of the Neurological Sciences, 2014, 342, 173-177.	0.6	21
63	Amyloid and intracellular accumulation of BRI2. Neurobiology of Aging, 2017, 52, 90-97.	3.1	21
64	Failure to Detect the Presence of Prions in the Uterine and Gestational Tissues from a Gravida with Creutzfeldt-Jakob Disease. American Journal of Pathology, 2009, 174, 1602-1608.	3.8	19
65	Activated endothelial cells induce a distinct type of astrocytic reactivity. Communications Biology, 2022, 5, 282.	4.4	19
66	Increased Tau Phosphorylation and Tau Truncation, and Decreased Synaptophysin Levels in Mutant BRI2/Tau Transgenic Mice. PLoS ONE, 2013, 8, e56426.	2.5	18
67	Amyloidogenesis in Familial British Dementia Is Associated with a Genetic Defect on Chromosome 13. Annals of the New York Academy of Sciences, 2000, 920, 84-92.	3.8	17
68	Alzheimer's presenilin 1 gene expression in platelets and megakaryocytes. FEBS Letters, 1996, 393, 19-23.	2.8	16
69	Amyloid peptides ABri and ADan show differential neurotoxicity in transgenic Drosophila models of familial British and Danish dementia. Molecular Neurodegeneration, 2014, 9, 5.	10.8	14
70	Sub-3â€ [−] Ã… apoferritin structure determined with full range of phase shifts using a single position of volta phase plate. Journal of Structural Biology, 2019, 206, 225-232.	2.8	14
71	Characterization of Amyloid Deposits in Neurodegenerative Diseases. Methods in Molecular Biology, 2011, 793, 241-258.	0.9	14
72	Tau Protein Binding Modes in Alzheimer's Disease for Cationic Luminescent Ligands. Journal of Physical Chemistry B, 2021, 125, 11628-11636.	2.6	14

#	Article	IF	CITATIONS
73	The Psen1â€L166P â€knockâ€in mutation leads to amyloid deposition in human wildâ€type amyloid precursor protein YAC transgenic mice. FASEB Journal, 2012, 26, 2899-2910.	0.5	13
74	Familial Cerebral Amyloid Angiopathies and Dementia. Alzheimer Disease and Associated Disorders, 2000, 14, S25-S30.	1.3	11
75	Vascular amyloid accumulation alters the gabaergic synapse and induces hyperactivity in a model of cerebral amyloid angiopathy. Aging Cell, 2020, 19, e13233.	6.7	8
76	Thiopheneâ€Based Optical Ligands That Selectively Detect Aβ Pathology in Alzheimer's Disease. ChemBioChem, 2021, 22, 2568-2581.	2.6	8
77	New familial forms of cerebral amyloid and dementia. Molecular Psychiatry, 2000, 5, 575-576.	7.9	7
78	Apolipoprotein E and Amyloidogenesis. Novartis Foundation Symposium, 1996, 199, 132-145.	1.1	6
79	Cryo-EM structures and functional characterization of homo- and heteropolymers of human ferritin variants. Scientific Reports, 2020, 10, 20666.	3.3	3
80	Sequencing of the Alzheimer's APP gene Dutch variant (APP-D). Human Mutation, 1993, 2, 495-495.	2.5	1
81	Neuropathology and Genetics of Prion Protein and British Cerebral Amyloid Angiopathies. , 2000, , 237-247.		1
82	Generation of a novel murine model of AÎ ² deposition based on the expression of human wild-type amyloid precursor protein gene. Prion, 2012, 6, 346-349.	1.8	0
83	P2â€293: Contribution of the Neuropathology Laboratory at Indiana University to the Deciphering of Dominantly Inherited Dementias: 1976â€2016. Alzheimer's and Dementia, 2016, 12, P744.	0.8	0
84	Sub-3 Ã Apoferritin Structure Determined with Single Position of Volta Phase Plate and Full Range of Phase Shift. Microscopy and Microanalysis, 2020, 26, 2300-2302.	0.4	0
85	Neuropathological characterization of early onset Alzheimer disease associated with the V717L APP mutation. FASEB Journal, 2008, 22, 707.8.	0.5	0
86	Other neurodegenerative conditions I. , 2014, , 249-258.		0
87	Other neurogenerative conditions III. , 0, , 263-267.		0