List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5173335/publications.pdf Version: 2024-02-01

		19657	18647
125	18,913	61	119
papers	citations	h-index	g-index
137 all docs	137 docs citations	137 times ranked	28466 citing authors

IOHN H RRUMELL

#	Article	IF	CITATIONS
1	C5orf51 is a component of the MON1-CCZ1 complex and controls RAB7A localization and stability during mitophagy. Autophagy, 2022, 18, 829-840.	9.1	21
2	Global Proximity Interactome of the Human Macroautophagy Pathway. Autophagy, 2022, 18, 1174-1186.	9.1	9
3	Macrophage NOX2 NADPH oxidase maintains alveolar homeostasis in mice. Blood, 2022, 139, 2855-2870.	1.4	9
4	Kinase-independent synthesis of 3-phosphorylated phosphoinositides by a phosphotransferase. Nature Cell Biology, 2022, 24, 708-722.	10.3	18
5	The MCF Toxin of the Extracellular Pathogen <i>Vibrio vulnificus</i> is Activated by and Targets Host GTPases. FASEB Journal, 2022, 36, .	0.5	0
6	V-ATPase is a universal regulator of LC3-associated phagocytosis and non-canonical autophagy. Journal of Cell Biology, 2022, 221, .	5.2	53
7	Cutting Edge: NOX2 NADPH Oxidase Controls Infection by an Intracellular Bacterial Pathogen through Limiting the Type 1 IFN Response. Journal of Immunology, 2021, 206, 323-328.	0.8	5
8	A glucose meter interface for point-of-care gene circuit-based diagnostics. Nature Communications, 2021, 12, 724.	12.8	54
9	Plasma membrane integrity: implications for health and disease. BMC Biology, 2021, 19, 71.	3.8	95
10	Rab5 regulates macropinocytosis by recruiting the inositol 5-phosphatases OCRL and Inpp5b that hydrolyse PtdIns(4,5)P2. Journal of Cell Science, 2021, 134, .	2.0	17
11	Communication Between Autophagy and Insulin Action: At the Crux of Insulin Action-Insulin Resistance?. Frontiers in Cell and Developmental Biology, 2021, 9, 708431.	3.7	27
12	Listeria exploits IFITM3 to suppress antibacterial activity in phagocytes. Nature Communications, 2021, 12, 4999.	12.8	11
13	Salmonella effector SopD promotes plasma membrane scission by inhibiting Rab10. Nature Communications, 2021, 12, 4707.	12.8	8
14	GABARAP sequesters the FLCN-FNIP tumor suppressor complex to couple autophagy with lysosomal biogenesis. Science Advances, 2021, 7, eabj2485.	10.3	51
15	Disruption of autophagy by increased 5-HT alters gut microbiota and enhances susceptibility to experimental colitis and Crohn's disease. Science Advances, 2021, 7, eabi6442.	10.3	25
16	Functional genomic landscape of cancer-intrinsic evasion of killing by T cells. Nature, 2020, 586, 120-126.	27.8	249
17	Accumulation of genetic variants associated with immunity in the selective breeding of broilers. BMC Genetics, 2020, 21, 5.	2.7	13
18	BioID screen of Salmonella type 3 secreted effectors reveals host factors involved in vacuole positioning and stability during infection. Nature Microbiology, 2019, 4, 2511-2522.	13.3	39

#	Article	IF	CITATIONS
19	Palmitoylation of NOD1 and NOD2 is required for bacterial sensing. Science, 2019, 366, 460-467.	12.6	109
20	An autophagy-independent role for ATG16L1: promoting lysosome-mediated plasma membrane repair. Autophagy, 2019, 15, 932-933.	9.1	9
21	Atg16L1 Knockout Induces Insulin Resistance through Proteasomal IRS1 Degradation, Mediated by the Induction of ER Stress. FASEB Journal, 2019, 33, 719.10.	O.5	0
22	Invasion of the Brain by <i>Listeria monocytogenes</i> Is Mediated by InIF and Host Cell Vimentin. MBio, 2018, 9, .	4.1	72
23	An ATG16L1-dependent pathway promotes plasma membrane repair and limits Listeria monocytogenes cell-to-cell spread. Nature Microbiology, 2018, 3, 1472-1485.	13.3	57
24	Global Interactomics Uncovers Extensive Organellar Targeting by Zika Virus. Molecular and Cellular Proteomics, 2018, 17, 2242-2255.	3.8	112
25	<i>Salmonella</i> exploits host Rho GTPase signalling pathways through the phosphatase activity of SopB. Cellular Microbiology, 2018, 20, e12938.	2.1	22
26	Septin-regulated actin dynamics promote <i>Salmonella</i> invasion of host cells. Cellular Microbiology, 2018, 20, e12866.	2.1	18
27	Autophagyâ€Related Protein 16L1 (Atg16L1) Depletion Induces Insulin Resistance Through Decreased IRS Expression. FASEB Journal, 2018, 32, lb419.	0.5	0
28	VAPs and ACBD5 tether peroxisomes to the ER for peroxisome maintenance and lipid homeostasis. Journal of Cell Biology, 2017, 216, 367-377.	5.2	214
29	The peroxisomal AAA ATPase complex prevents pexophagy and development of peroxisome biogenesis disorders. Autophagy, 2017, 13, 868-884.	9.1	81
30	Listeriolysin O: from bazooka to Swiss army knife. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160222.	4.0	55
31	Loss of the Arp2/3 complex component ARPC1B causes platelet abnormalities and predisposes to inflammatory disease. Nature Communications, 2017, 8, 14816.	12.8	176
32	Activity-independent targeting of mTOR to lysosomes in primary osteoclasts. Scientific Reports, 2017, 7, 3005.	3.3	11
33	Type I interferon promotes cell-to-cell spread ofListeria monocytogenes. Cellular Microbiology, 2017, 19, e12660.	2.1	27
34	Lysosomal pH Plays a Key Role in Regulation of mTOR Activity in Osteoclasts. Journal of Cellular Biochemistry, 2016, 117, 413-425.	2.6	47
35	Autophagy proteins are not universally required for phagosome maturation. Autophagy, 2016, 12, 1440-1446.	9.1	35
36	Inhibition of Dopamine Receptor D4 Impedes Autophagic Flux, Proliferation, and Survival of Glioblastoma Stem Cells. Cancer Cell, 2016, 29, 859-873.	16.8	169

#	Article	IF	CITATIONS
37	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
38	Variants in TRIM22 That Affect NOD2 Signaling Are Associated With Very-Early-Onset Inflammatory Bowel Disease. Gastroenterology, 2016, 150, 1196-1207.	1.3	88
39	Active Transport of Phosphorylated Carbohydrates Promotes Intestinal Colonization and Transmission of a Bacterial Pathogen. PLoS Pathogens, 2015, 11, e1005107.	4.7	30
40	The Diaphanous-Related Formins Promote Protrusion Formation and Cell-to-Cell Spread of <i>Listeria monocytogenes</i> . Journal of Infectious Diseases, 2015, 211, 1185-1195.	4.0	49
41	Salmonella Disrupts Host Endocytic Trafficking by SopD2-Mediated Inhibition of Rab7. Cell Reports, 2015, 12, 1508-1518.	6.4	83
42	Defects in Nicotinamide-adenine Dinucleotide Phosphate Oxidase Genes NOX1 and DUOX2 in Very Early Onset Inflammatory Bowel Disease. Cellular and Molecular Gastroenterology and Hepatology, 2015, 1, 489-502.	4.5	127
43	Strain-Specific Interactions of Listeria monocytogenes with the Autophagy System in Host Cells. PLoS ONE, 2015, 10, e0125856.	2.5	10
44	Mice lacking NOX2 are hyperphagic and store fat preferentially in the liver. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E1341-E1353.	3.5	19
45	Higher Activity of the Inducible Nitric Oxide Synthase Contributes to Very Early Onset Inflammatory Bowel Disease. Clinical and Translational Gastroenterology, 2014, 5, e46.	2.5	71
46	Bacterial subversion of host cytoskeletal machinery: Hijacking formins and the Arp2/3 complex. BioEssays, 2014, 36, 687-696.	2.5	27
47	Mutations in Tetratricopeptide Repeat Domain 7A Result in a Severe Form of Very Early Onset Inflammatory Bowel Disease. Gastroenterology, 2014, 146, 1028-1039.	1.3	175
48	Listeria monocytogenes exploits efferocytosis to promote cell-to-cell spread. Nature, 2014, 509, 230-234.	27.8	118
49	Bacteria–autophagy interplay: a battle for survival. Nature Reviews Microbiology, 2014, 12, 101-114.	28.6	496
50	HACE1-dependent protein degradation provides cardiac protection in response to haemodynamic stress. Nature Communications, 2014, 5, 3430.	12.8	31
51	Variants in Nicotinamide Adenine Dinucleotide Phosphate Oxidase Complex Components Determine Susceptibility to Very Early Onset Inflammatory Bowel Disease. Gastroenterology, 2014, 147, 680-689.e2.	1.3	106
52	Formin-mediated actin polymerization promotes <i>Salmonella</i> invasion. Cellular Microbiology, 2013, 15, 2051-2063.	2.1	22
53	Bacterial Escape Artists Set Afire. Science, 2013, 339, 912-913.	12.6	2
54	Host and bacterial factors that regulate LC3 recruitment to <i><i>Listeria monocytogenes</i></i> during the early stages of macrophage infection. Autophagy, 2013, 9, 985-995.	9.1	108

#	Article	IF	CITATIONS
55	Multiple Host Kinases Contribute to Akt Activation during Salmonella Infection. PLoS ONE, 2013, 8, e71015.	2.5	20
56	Modulation of Host Phosphoinositide Metabolism During Salmonella Invasion by the Type III Secreted Effector SopB. Methods in Cell Biology, 2012, 108, 173-186.	1.1	9
57	Rab7 and Arl8 <scp>GTPases</scp> are Necessary for Lysosome Tubulation in Macrophages. Traffic, 2012, 13, 1667-1679.	2.7	118
58	A sweet way of sensing danger. Nature, 2012, 482, 316-317.	27.8	7
59	Interactions of Pathogenic Bacteria with Autophagy Systems. Current Biology, 2012, 22, R540-R545.	3.9	154
60	Brucella "Hitches a Ride―with Autophagy. Cell Host and Microbe, 2012, 11, 2-4.	11.0	7
61	Yersinia Entry into Host Cells Requires Rab5-Dependent Dephosphorylation of PI(4,5)P2 and Membrane Scission. Cell Host and Microbe, 2012, 11, 117-128.	11.0	59
62	Receptor protein complexes are in control of autophagy. Autophagy, 2012, 8, 1701-1705.	9.1	77
63	Interactions of Listeria monocytogenes with the Autophagy System of Host Cells. Advances in Immunology, 2012, 113, 7-18.	2.2	28
64	Single Nucleotide Polymorphisms That Increase Expression of the Guanosine Triphosphatase RAC1 Are Associated With Ulcerative Colitis. Gastroenterology, 2011, 141, 633-641.	1.3	67
65	The ubiquitin-binding adaptor proteins p62/SQSTM1 and NDP52 are recruited independently to bacteria-associated microdomains to target Salmonella to the autophagy pathway. Autophagy, 2011, 7, 341-345.	9.1	185
66	Autophagy Signaling Through Reactive Oxygen Species. Antioxidants and Redox Signaling, 2011, 14, 2215-2231.	5.4	209
67	Listeriolysin O Suppresses Phospholipase C-Mediated Activation of the Microbicidal NADPH Oxidase to Promote Listeria monocytogenes Infection. Cell Host and Microbe, 2011, 10, 627-634.	11.0	72
68	NADPH oxidase complex and IBD Candidate Gene studies. Inflammatory Bowel Diseases, 2011, 17, S8.	1.9	0
69	Salmonella exploits Arl8B-directed kinesin activity to promote endosome tubulation and cell-to-cell transfer. Cellular Microbiology, 2011, 13, 1812-1823.	2.1	43
70	Bacterial toxins can inhibit host cell autophagy through cAMP generation. Autophagy, 2011, 7, 957-965.	9.1	54
71	Antibacterial autophagy occurs at PI(3)P-enriched domains of the endoplasmic reticulum and requires Rab1 GTPase. Autophagy, 2011, 7, 17-26.	9.1	102
72	A role for diacylglycerol in antibacterial autophagy. Autophagy, 2011, 7, 331-333.	9.1	9

#	Article	IF	CITATIONS
73	A comprehensive glossary of autophagy-related molecules and processes (2 nd edition). Autophagy, 2011, 7, 1273-1294.	9.1	255
74	The many roles of NOX2 NADPH oxidase-derived ROS in immunity. Seminars in Immunopathology, 2010, 32, 415-430.	6.1	206
75	Bacterial Invasion: Entry through the Exocyst Door. Current Biology, 2010, 20, R677-R679.	3.9	4
76	Sorting nexin 3 (SNX3) is a component of a tubular endosomal network induced by Salmonella and involved in maturation of the Salmonella-containing vacuole. Cellular Microbiology, 2010, 12, 1352-1367.	2.1	63
77	Trs85 directs a Ypt1 GEF, TRAPPIII, to the phagophore to promote autophagy. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7811-7816.	7.1	244
78	The Phosphoinositide Phosphatase SopB Manipulates Membrane Surface Charge and Trafficking of the Salmonella-Containing Vacuole. Cell Host and Microbe, 2010, 7, 453-462.	11.0	144
79	A Diacylglycerol-Dependent Signaling Pathway Contributes to Regulation of Antibacterial Autophagy. Cell Host and Microbe, 2010, 8, 137-146.	11.0	141
80	Activation of antibacterial autophagy by NADPH oxidases. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6226-6231.	7.1	506
81	The Adaptor Protein p62/SQSTM1 Targets Invading Bacteria to the Autophagy Pathway. Journal of Immunology, 2009, 183, 5909-5916.	0.8	501
82	<i>Salmonella</i> -Containing Vacuoles Display Centrifugal Movement Associated with Cell-to-Cell Transfer in Epithelial Cells. Infection and Immunity, 2009, 77, 996-1007.	2.2	39
83	NADPH oxidases contribute to autophagy regulation. Autophagy, 2009, 5, 887-889.	9.1	47
84	Eating Twice for the Sake of Immunity: A Phagocytic Receptor that Activates Autophagy. Cell Host and Microbe, 2009, 6, 297-298.	11.0	4
85	Autophagy in Immunity Against Intracellular Bacteria. Current Topics in Microbiology and Immunology, 2009, 335, 189-215.	1.1	55
86	<i>Salmonella</i> ontaining Vacuoles: Directing Traffic and Nesting to Grow. Traffic, 2008, 9, 2022-2031.	2.7	156
87	Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles. Nature, 2008, 451, 350-354.	27.8	273
88	A Listeria escape trick. Nature, 2008, 455, 1186-1187.	27.8	6
89	SopB promotes phosphatidylinositol 3-phosphate formation on <i>Salmonella</i> vacuoles by recruiting Rab5 and Vps34. Journal of Cell Biology, 2008, 182, 741-752.	5.2	191
90	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4, 151-175.	9.1	2,064

#	Article	IF	CITATIONS
91	Role for Myosin II in Regulating Positioning of <i>Salmonella</i> -Containing Vacuoles and Intracellular Replication. Infection and Immunity, 2008, 76, 2722-2735.	2.2	49
92	Avoiding death by autophagy: Interactions of <i>Listeria monocytogenes</i> with the macrophage autophagy system. Autophagy, 2008, 4, 368-371.	9.1	35
93	Alteration of Epithelial Structure and Function Associated with PtdIns(4,5)P2 Degradation by a Bacterial Phosphatase. Journal of General Physiology, 2007, 129, 267-283.	1.9	85
94	<i>Listeria monocytogenes</i> Evades Killing by Autophagy During Colonization of Host Cells. Autophagy, 2007, 3, 442-451.	9.1	229
95	Manipulation of Rab GTPase Function by Intracellular Bacterial Pathogens. Microbiology and Molecular Biology Reviews, 2007, 71, 636-652.	6.6	180
96	Src homology domain 2 adaptors affect adherence of Salmonella enterica serovar Typhimurium to non-phagocytic cells. Microbiology (United Kingdom), 2007, 153, 3517-3526.	1.8	4
97	A network of Rab GTPases controls phagosome maturation and is modulated by Salmonella enterica serovar Typhimurium. Journal of Cell Biology, 2007, 176, 263-268.	5.2	151
98	SopD acts cooperatively with SopB during Salmonella enterica serovar Typhimurium invasion. Cellular Microbiology, 2007, 9, 2839-2855.	2.1	64
99	Autophagy Recognizes Intracellular Salmonella enterica serovar Typhimurium in Damaged Vacuoles. Autophagy, 2006, 2, 156-158.	9.1	126
100	ALIS are Stress-Induced Protein Storage Compartments for Substrates of the Proteasome and Autophagy. Autophagy, 2006, 2, 189-199.	9.1	182
101	Autophagy Controls Salmonella Infection in Response to Damage to the Salmonella-containing Vacuole. Journal of Biological Chemistry, 2006, 281, 11374-11383.	3.4	578
102	Mutational analysis of Salmonella translocated effector members SifA and SopD2 reveals domains implicated in translocation, subcellular localization and function. Microbiology (United Kingdom), 2006, 152, 2323-2343.	1.8	30
103	Intracellular Voyeurism: Examining the Modulation of Host Cell Activities by <i>Salmonella enterica Serovar Typhimurium</i> . EcoSal Plus, 2005, 1, .	5.4	0
104	SseJ Deacylase Activity by Salmonella enterica Serovar Typhimurium Promotes Virulence in Mice. Infection and Immunity, 2005, 73, 6249-6259.	2.2	102
105	Salmonella-Induced Filament Formation Is a Dynamic Phenotype Induced by Rapidly Replicating Salmonella enterica Serovar Typhimurium in Epithelial Cells. Infection and Immunity, 2005, 73, 1204-1208.	2.2	58
106	Interaction of the Salmonella-containing Vacuole with the Endocytic Recycling System*. Journal of Biological Chemistry, 2005, 280, 24634-24641.	3.4	69
107	Expression and Secretion of Salmonella Pathogenicity Island-2 Virulence Genes in Response to Acidification Exhibit Differential Requirements of a Functional Type III Secretion Apparatus and SsaL. Journal of Biological Chemistry, 2004, 279, 49804-49815.	3.4	166
108	SalmonellaImpairs RILP Recruitment to Rab7 during Maturation of Invasion Vacuoles. Molecular Biology of the Cell, 2004, 15, 3146-3154.	2.1	147

#	ARTICLE	IF	CITATIONS
109	The related effector proteins SopD and SopD2 from Salmonella enterica serovar Typhimurium contribute to virulence during systemic infection of mice. Molecular Microbiology, 2004, 54, 1186-1198.	2.5	85
110	Recognition of Bacteria in the Cytosol of Mammalian Cells by the Ubiquitin System. Current Biology, 2004, 14, 806-811.	3.9	457
111	Salmonella redirects phagosomal maturation. Current Opinion in Microbiology, 2004, 7, 78-84.	5.1	117
112	SopD2 is a Novel Type III Secreted Effector of Salmonella typhimurium That Targets Late Endocytic Compartments Upon Delivery Into Host Cells. Traffic, 2003, 4, 36-48.	2.7	104
113	Role of lipid-mediated signal transduction in bacterial internalization. Cellular Microbiology, 2003, 5, 287-297.	2.1	50
114	Disruption of the Salmonella-Containing Vacuole Leads to Increased Replication of Salmonella enterica Serovar Typhimurium in the Cytosol of Epithelial Cells. Infection and Immunity, 2002, 70, 3264-3270.	2.2	169
115	SifA, a Type III Secreted Effector ofSalmonella typhimurium, DirectsSalmonella-Induced Filament (Sif) Formation Along Microtubules. Traffic, 2002, 3, 407-415.	2.7	166
116	N-terminal conservation of putative type III secreted effectors of Salmonella typhimurium. Molecular Microbiology, 2002, 36, 773-774.	2.5	9
117	The invasion-associated type III secretion system of Salmonella enterica serovar Typhimurium is necessary for intracellular proliferation and vacuole biogenesis in epithelial cells. Cellular Microbiology, 2002, 4, 43-54.	2.1	195
118	SifA permits survival and replication of Salmonella typhimurium in murine macrophages. Cellular Microbiology, 2001, 3, 75-84.	2.1	163
119	Characterization of Salmonella -Induced Filaments (Sifs) Reveals a Delayed Interaction Between Salmonella -Containing Vacuoles and Late Endocytic Compartments. Traffic, 2001, 2, 643-653.	2.7	112
120	Requirement for N-Ethylmaleimide-sensitive Factor Activity at Different Stages of Bacterial Invasion and Phagocytosis. Journal of Biological Chemistry, 2001, 276, 4772-4780.	3.4	49
121	<i>SALMONELLA</i> INTERACTIONS WITH HOST CELLS: <i>IN VITRO</i> TO <i>IN VIVO</i> ., 2001, , .		2
122	Salmonella pathogenicity islands: big virulence in small packages. Microbes and Infection, 2000, 2, 145-156.	1.9	371
123	Microbial pathogenesis: Lipid rafts as pathogen portals. Current Biology, 2000, 10, R823-R825.	3.9	146
124	Salmonellainteractions with host cells:in vitroto in vivo. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 623-631.	4.0	94
125	Bacterial invasion: Force feeding by Salmonella. Current Biology, 1999, 9, R277-R280.	3.9	62