Xiaomin Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5171200/publications.pdf

Version: 2024-02-01

361413 434195 1,160 50 20 31 citations h-index g-index papers 56 56 56 1357 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Synthesis of Bulky and Electron-Rich MOP-type Ligands and Their Applications in Palladium-Catalyzed Câ^'N Bond Formation. Journal of Organic Chemistry, 2006, 71, 6522-6529.	3.2	116
2	Sodium Sulfite-Involved Photocatalytic Radical Cascade Cyclization of 2-Isocyanoaryl Thioethers: Access to 2-CF ₂ /CF ₃ -Containing Benzothiazoles. Organic Letters, 2019, 21, 469-472.	4.6	57
3	Visible light-induced intramolecular dearomative cyclization of α-bromo-N-benzyl-alkylamides: efficient construction of 2-azaspiro[4.5]decanes. Chemical Communications, 2016, 52, 3709-3712.	4.1	53
4	Visible-Light-Induced Photocatalytic Aerobic Oxidation/Povarov Cyclization Reaction: Synthesis of Substituted Quinoline-Fused Lactones. Journal of Organic Chemistry, 2016, 81, 8770-8776.	3.2	44
5	Visible-Light-Driven Dearomatization Reaction toward the Formation of Spiro[4.5]deca-1,6,9-trien-8-ones. Organic Letters, 2020, 22, 528-532.	4.6	44
6	Diastereo- and Enantioselective Asymmetric Hydrogenation of \hat{l}_{\pm} -Amido- \hat{l}_{\pm} -keto Phosphonates via Dynamic Kinetic Resolution. Organic Letters, 2013, 15, 72-75.	4.6	41
7	Coordination determined chemo- and enantioselectivities in asymmetric hydrogenation of multi-functionalized ketones. Coordination Chemistry Reviews, 2018, 355, 39-53.	18.8	39
8	Palladium-Catalyzed Amidation of Aryl Halides Using 2-Dialkylphosphino-2′-alkoxyl-1,1′-binaphthyl as Ligands. Journal of Organic Chemistry, 2012, 77, 5279-5285.	3.2	38
9	Palladium-catalyzed coupling reaction of amino acids (esters) with aryl bromides and chlorides. Tetrahedron, 2011, 67, 9405-9410.	1.9	34
10	Ru-Catalyzed Asymmetric Hydrogenation of \hat{I}^3 -Heteroatom Substituted \hat{I}^2 -Keto Esters. Journal of Organic Chemistry, 2011, 76, 9444-9451.	3.2	34
11	Visible-Light-Induced Intermolecular Dearomative Cyclization of 2-Bromo-1,3-dicarbonyl Compounds and Alkynes: Synthesis of Spiro[4.5]deca-1,6,9-trien-8-ones. Organic Letters, 2018, 20, 5762-5765.	4.6	34
12	Synthesis of 3-CF ₂ -Containing Chromones via a Visible-Light-Induced Radical Cascade Reaction of <i>o</i> -Hydroxyaryl Enaminones. ACS Omega, 2017, 2, 3168-3174.	3.5	32
13	Visible Light-Induced Radical Rearrangement to Construct C–C Bonds via an Intramolecular Aryl Migration/Desulfonylation Process. Journal of Organic Chemistry, 2016, 81, 7036-7041.	3.2	28
14	Potassium Hydroxideâ€Catalyzed Chemoselective Reduction of Cyclic Imides with Hydrosilanes: Synthesis of ݉â€Hydroxylactams and Lactams. Advanced Synthesis and Catalysis, 2016, 358, 1241-1250.	4.3	28
15	Ru-catalyzed highly chemo- and enantioselective hydrogenation of î³-halo-î³,î´-unsaturated-î²-keto esters under neutral conditions. Chemical Communications, 2012, 48, 5352.	4.1	27
16	The coupling reactions of aryl halides and phenols catalyzed byÂpalladium and MOP-type ligands. Tetrahedron, 2015, 71, 4927-4932.	1.9	27
17	Visible-Light-Induced Intermolecular Dearomative Cyclization of Furans: Synthesis of 1-Oxaspiro[4.4]nona-3,6-dien-2-one. Journal of Organic Chemistry, 2019, 84, 1461-1467.	3.2	24
18	Acid-labile \hat{l} -ketal- \hat{l} -hydroxy esters by asymmetric hydrogenation of corresponding \hat{l} -ketal- \hat{l} -keto esters in the presence of CaCO3. Chemical Communications, 2012, 48, 4247.	4.1	23

#	Article	IF	Citations
19	Nickel-Catalyzed Hydrosilylation of Terminal Alkenes with Primary Silanes via Electrophilic Silicon–Hydrogen Bond Activation. Organic Letters, 2021, 23, 1434-1439.	4.6	23
20	Effects of solvent and base on the palladium-catalyzed amination: PdCl2(Ph3P)2/Ph3P-catalyzed selective arylation of primary anilines with aryl bromides. Tetrahedron, 2014, 70, 4754-4759.	1.9	22
21	Zincâ€Catalyzed Selective Reduction of Cyclic Imides with Hydrosilanes: Synthesis of ωâ€Hydroxylactams. Advanced Synthesis and Catalysis, 2015, 357, 1013-1021.	4.3	22
22	An Enantioselective Approach to 4- <i>O</i> -Protected-2-cyclopentene-1,4-diol Derivatives via a Rhodium-Catalyzed Redox-Isomerization Reaction. Journal of Organic Chemistry, 2015, 80, 12572-12579.	3.2	20
23	Visible-light induced tandem radical cyanomethylation and cyclization of N-aryl acrylamides: access to cyanomethylated oxindoles. RSC Advances, 2017, 7, 49299-49302.	3.6	20
24	Visible-Light-Induced Radical Cascade Cyclization: Synthesis of the ABCD Ring Cores of Camptothecins. Journal of Organic Chemistry, 2018, 83, 2840-2846.	3.2	19
25	Merging Visibleâ€Light Photoredox and Lewis Acid Catalysis for the Intramolecular Azaâ€Diels–Alder Reaction: Synthesis of Substituted Chromeno[4,3â€ <i>b</i>) Quinolines and [1,6]Naphthyridines. ChemCatChem, 2018, 10, 2878-2886.	3.7	18
26	Combining Visible-Light-Photoredox and Lewis Acid Catalysis for the Synthesis of Indolizino[1,2- <i>b</i>]quinolin-9(11 <i>H</i>)-ones and Irinotecan Precursor. Organic Letters, 2018, 20, 80-83.	4.6	18
27	Photocatalytic Radical <i>Ortho</i> -Dearomative Cyclization: Access to Spiro[4.5]deca-1,7,9-trien-6-ones. Journal of Organic Chemistry, 2021, 86, 3697-3705.	3.2	18
28	Cationicâ€Rhodiumâ€Catalyzed Kinetic Resolution of Allylic Alcohols through a Redox Isomerization Reaction in a Noncoordinating Solvent. ChemCatChem, 2013, 5, 1317-1320.	3.7	17
29	Visible-light-induced intramolecular radical cascade of î±-bromo- <i>N</i> benzyl-alkylamides: a new strategy to synthesize tetracyclic <i>N</i> fused indolo[2,1- <i>a</i>]isoquinolin-6(5 <i>H</i>)-ones. Organic and Biomolecular Chemistry, 2020, 18, 263-271.	2.8	17
30	Rutheniumâ€Catalyzed Enantioselective Hydrogenation/Lactonization of 2â€Acylarylcarboxylates: Direct Access to Chiral 3â€Substituted Phthalides. ChemCatChem, 2017, 9, 3989-3996.	3.7	16
31	Dynamic kinetic resolution of β′-keto-β-amino esters using Ru–DTBM–Sunphos catalyzed asymmetric hydrogenation. Tetrahedron, 2013, 69, 7152-7156.	1.9	15
32	Visible light-induced aerobic C–N bond activation: a photocatalytic strategy for the preparation of 2-arylpyridines and 2-arylquinolines. RSC Advances, 2016, 6, 48315-48318.	3.6	15
33	Reduction of Benzolactams to Isoindoles via an Alkoxide-Catalyzed Hydrosilylation. Organic Letters, 2017, 19, 6048-6051.	4.6	15
34	Ru-catalyzed hydrogenation of 3,5-diketo amides: simultaneous control of chemo- and enantioselectivity. Chemical Communications, 2012, 48, 8976.	4.1	14
35	Visible-light-induced cascade dearomatization cyclization between alkynes and indole-derived bromides: a facile strategy to synthesize spiroindolenines. Chemical Communications, 2020, 56, 14047-14050.	4.1	13
36	Ruthenium-Catalyzed Enantioselective Hydrogenation of Ferrocenyl Ketones: A Synthetic Method for Chiral Ferrocenyl Alcohols. Journal of Organic Chemistry, 2015, 80, 9563-9569.	3.2	12

#	Article	IF	Citations
37	Ru-catalyzed asymmetric hydrogenation of \hat{l} -keto Weinreb amides: enantioselective synthesis of (+)-Centrolobine. Organic and Biomolecular Chemistry, 2016, 14, 2723-2730.	2.8	12
38	Highly Diastereo- and Enantioselective Access to <i>syn</i> -α-Amido β-Hydroxy Esters via Ruthenium-Catalyzed Dynamic Kinetic Resolution-Asymmetric Hydrogenation. Journal of Organic Chemistry, 2019, 84, 3201-3213.	3.2	11
39	Distinct Catalytic Performance of Dirhodium(II) Complexes with <i>ortho</i> -Metalated DPPP in Dehydrosilylation of Styrene Derivatives with Alkoxysilanes. ACS Catalysis, 2021, 11, 10190-10197.	11.2	11
40	Ru-catalyzed highly enantioselective hydrogenation of \hat{l}_{\pm} -keto Weinreb amides. Science China Chemistry, 2013, 56, 342-348.	8.2	10
41	Cyanation of Unactivated Aryl Chlorides and Aryl Mesylates Catalyzed by Palladium and Hemilabile MOP-Type Ligands. Synlett, 2014, 25, 2938-2942.	1.8	10
42	Visibleâ€Lightâ€Induced Radical Cascade Cyclization: Synthesis of (20 <i>S</i>)â€Camptothecin, SNâ€38 and Irinotecan. Chinese Journal of Chemistry, 2018, 36, 1035-1040.	4.9	10
43	[Rh(COD)Cl] ₂ /PPh ₃ -Catalyzed Dehydrogenative Silylation of Styrene Derivatives with NBE as a Hydrogen Acceptor. Organometallics, 2020, 39, 3780-3788.	2.3	10
44	Alkoxide-Catalyzed Hydrosilylation of Cyclic Imides to Isoquinolines via Tandem Reduction and Rearrangement. Organic Letters, 2018, 20, 5610-5613.	4.6	9
45	Stereoselective Synthesis of <i>cis</i> -2-Ene-1,4-diones via Aerobic Oxidation of Substituted Furans Catalyzed by ABNO/HNO ₃ . Journal of Organic Chemistry, 2021, 86, 14311-14320.	3.2	9
46	Ru-Catalyzed Chemo- and Enantioselective Hydrogenation of 2,4-Pentadien-1-ones: Synthesis of Chiral 2,4-Pentadien-1-ols. Journal of Organic Chemistry, 2019, 84, 16086-16094.	3.2	8
47	PdCl ₂ (Ph ₃ P) ₂ /Salicylaldimine Catalyzed Diarylation of Anilines with Unactivated Aryl Chlorides. Chinese Journal of Chemistry, 2017, 35, 1749-1754.	4.9	6
48	Tri(pentaflurophenyl)borane-catalyzed reduction of cyclic imides with hydrosilanes: Synthesis of pyrrolidines. Tetrahedron, 2018, 74, 1144-1150.	1.9	6
49	Ru-Catalyzed Chemo- and Enantioselective Hydrogenation of \hat{l}^2 -Diketones Assisted by the Neighboring Heteroatoms. Organic Letters, 2019, 21, 5509-5513.	4.6	6
50	A General and Facile Approach for the Synthesis of 2′â€Functionalized 1,1′â€Binapthylâ€2â€ols. Chinese Joof Chemistry, 2010, 28, 1630-1634.	urnal 4.9	5