

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5170705/publications.pdf Version: 2024-02-01

СнацКу

#	Article	IF	CITATIONS
1	Neuroprotection in Glaucoma: NAD+/NADH Redox State as a Potential Biomarker and Therapeutic Target. Cells, 2021, 10, 1402.	4.1	19
2	Glucocerebrosidase 1 and leucineâ€rich repeat kinase 2 in Parkinson disease and interplay between the two genes. Journal of Neurochemistry, 2021, 159, 826-839.	3.9	7
3	Glucocerebrosidase activity, cathepsin D and monomeric α-synuclein interactions in a stem cell derived neuronal model of a PD associated GBA1 mutation. Neurobiology of Disease, 2020, 134, 104620.	4.4	42
4	Insulin Resistance Promotes Parkinson's Disease through Aberrant Expression of α-Synuclein, Mitochondrial Dysfunction, and Deregulation of the Polo-Like Kinase 2 Signaling. Cells, 2020, 9, 740.	4.1	67
5	CBA mutation promotes early mitochondrial dysfunction in 3D neurosphere models. Aging, 2019, 11, 10338-10355.	3.1	15
6	A Human Neural Crest Stem Cell-Derived Dopaminergic Neuronal Model Recapitulates Biochemical Abnormalities in GBA1 Mutation Carriers. Stem Cell Reports, 2017, 8, 728-742.	4.8	57
7	Systemic PTEN-Akt1-mTOR pathway activity in patients with normal tension glaucoma and ocular hypertension: A case series. Mitochondrion, 2017, 36, 96-102.	3.4	6
8	IFNγ-Dependent Tissue-Immune Homeostasis Is Co-opted in the Tumor Microenvironment. Cell, 2017, 170, 127-141.e15.	28.9	140
9	PINK1 disables the anti-fission machinery to segregate damaged mitochondria for mitophagy. Journal of Cell Biology, 2016, 213, 163-171.	5.2	145
10	The Cytomegalovirus protein pUL37×1 targets mitochondria to mediate neuroprotection. Scientific Reports, 2016, 6, 31373.	3.3	9
11	Meclizine-induced enhanced glycolysis is neuroprotective in Parkinson disease cell models. Scientific Reports, 2016, 6, 25344.	3.3	42
12	Parkinson disease-linked GBA mutation effects reversed by molecular chaperones in human cell and fly models. Scientific Reports, 2016, 6, 31380.	3.3	133
13	Mitochondrial and lysosomal biogenesis are activated following <scp>PINK</scp> 1/parkinâ€mediated mitophagy. Journal of Neurochemistry, 2016, 136, 388-402.	3.9	184
14	Resistance to the most common optic neuropathy is associated with systemic mitochondrial efficiency. Neurobiology of Disease, 2015, 82, 78-85.	4.4	41
15	Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells. Brain, 2014, 137, 1481-1495.	7.6	258
16	Recharging mitochondrial batteries in old eyes. Near infra-red increases ATP. Experimental Eye Research, 2014, 122, 50-53.	2.6	73
17	Pramipexole Reduces Phosphorylation of α-Synuclein at Serine-129. Journal of Molecular Neuroscience, 2013, 51, 573-580.	2.3	14
18	Glucocerebrosidase inhibition causes mitochondrial dysfunction and free radical damage. Neurochemistry International, 2013, 62, 1-7.	3.8	166

Снаи Кү

#	Article	IF	CITATIONS
19	G2019S leucine-rich repeat kinase 2 causes uncoupling protein-mediated mitochondrial depolarization. Human Molecular Genetics, 2012, 21, 4201-4213.	2.9	147
20	Mitochondrial dysfunction in glaucoma: Understanding genetic influences. Mitochondrion, 2012, 12, 202-212.	3.4	85
21	Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Human Molecular Genetics, 2010, 19, 4861-4870.	2.9	795
22	Rasagiline protects against alpha-synuclein induced sensitivity to oxidative stress in dopaminergic cells. Neurochemistry International, 2010, 57, 525-529.	3.8	35
23	Relationship between alpha synuclein phosphorylation, proteasomal inhibition and cell death: relevance to Parkinson's disease pathogenesis. Journal of Neurochemistry, 2009, 110, 1005-1013.	3.9	87
24	Protection against paraquat and A53T alpha-synuclein toxicity by cabergoline is partially mediated by dopamine receptors. Journal of the Neurological Sciences, 2009, 278, 44-53.	0.6	17
25	Circulating antiâ€retinal antibodies as immune markers in ageâ€related macular degeneration. Immunology, 2005, 115, 422-430.	4.4	123
26	IFN-Â gene expression is controlled by the architectural transcription factor HMGA1. International Immunology, 2005, 17, 297-306.	4.0	13
27	Molecular Dissection of the Architectural Transcription Factor HMGA2. Biochemistry, 2003, 42, 4569-4577.	2.5	50
28	Derepression of HMGA2 Gene Expression in Retinoblastoma Is Associated with Cell Proliferation. Molecular Medicine, 2003, 9, 154-165.	4.4	21
29	Derepression of HMGA2 gene expression in retinoblastoma is associated with cell proliferation. Molecular Medicine, 2003, 9, 1.	4.4	16
30	The HMG I Proteins Dynamic Roles in Gene Activation, Development, and Tumorigenesis. Immunologic Research, 2001, 24, 13-30.	2.9	23
31	The Architectural Transcription Factor High Mobility Group I(Y) Participates in Photoreceptor-Specific Gene Expression. Journal of Neuroscience, 2000, 20, 7317-7324.	3.6	40
32	Functional Domains of the Cone-Rod Homeobox (CRX) Transcription Factor. Journal of Biological Chemistry, 2000, 275, 37264-37270.	3.4	63
33	Gene Transfer into Retinoblastoma Cells. BioTechniques, 1999, 26, 444-446.	1.8	6
34	Cis-element dependence and occupancy of the human invariant chain promoter in CIITA-dependent and -independent transcription. Molecular Immunology, 1999, 36, 447-460.	2.2	17
35	A novel downstream positive regulatory element mediating transcription of the human high mobility group (HMG) I-C gene. FEBS Letters, 1999, 457, 429-436.	2.8	13
36	Estrogen Treatment Induces Elevated Expression of HMG1 in MCF-7 Cells. Experimental Cell Research, 1998, 241, 269-272.	2.6	32

Снаи Кү

#	Article	IF	CITATIONS
37	The gene for the human architectural transcription factor HMGI-C consists ofn five exons each coding for a distinct functional element. Nucleic Acids Research, 1995, 23, 4262-4266.	14.5	76
38	Expression and cDNA Cloning of Human HMGI-C Phosphoprotein. Biochemical and Biophysical Research Communications, 1994, 201, 63-70.	2.1	56