
Katrin Ochsenreither

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5170695/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Production Strategies and Applications of Microbial Single Cell Oils. Frontiers in Microbiology, 2016, 7, 1539.	3.5	199
2	FoldX as Protein Engineering Tool: Better Than Random Based Approaches?. Computational and Structural Biotechnology Journal, 2018, 16, 25-33.	4.1	175
3	Biotechnological potential and applications of microbial consortia. Biotechnology Advances, 2020, 40, 107500.	11.7	113
4	Malic acid production from renewables: a review. Journal of Chemical Technology and Biotechnology, 2020, 95, 513-526.	3.2	98
5	Sustainable carbon sources for microbial organic acid production with filamentous fungi. Biotechnology for Biofuels, 2017, 10, 242.	6.2	79
6	Characterization of newly isolated oleaginous yeasts - Cryptococcus podzolicus, Trichosporon porosum and Pichia segobiensis. AMB Express, 2014, 4, 24.	3.0	71
7	Sequential Mixed Cultures: From Syngas to Malic Acid. Frontiers in Microbiology, 2016, 7, 891.	3.5	44
8	Process characterization and influence of alternative carbon sources and carbon-to-nitrogen ratio on organic acid production by Aspergillus oryzae DSM1863. Applied Microbiology and Biotechnology, 2014, 98, 5449-5460.	3.6	43
9	Current status and perspectives of 2-phenylethanol production through biological processes. Critical Reviews in Biotechnology, 2019, 39, 235-248.	9.0	40
10	Enzymatic glycolipid surfactant synthesis from renewables. Process Biochemistry, 2019, 87, 45-54.	3.7	39
11	The influence of different nitrogen and carbon sources on mycotoxin production in Alternaria alternata. International Journal of Food Microbiology, 2011, 147, 120-126.	4.7	37
12	Influence of pH and carbon to nitrogen ratio on mycotoxin production by Alternaria alternata in submerged cultivation. AMB Express, 2012, 2, 28.	3.0	33
13	Integrated Process for the Enzymatic Production of Fatty Acid Sugar Esters Completely Based on Lignocellulosic Substrates. Frontiers in Chemistry, 2018, 6, 421.	3.6	31
14	Enzymatic Synthesis of Glucose Monodecanoate in a Hydrophobic Deep Eutectic Solvent. International Journal of Molecular Sciences, 2020, 21, 4342.	4.1	31
15	Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Apiotrichum porosum DSM27194. Fuel, 2021, 290, 119811.	6.4	29
16	Co-production of single cell oil and gluconic acid using oleaginous Cryptococcus podzolicus DSM 27192. Biotechnology for Biofuels, 2019, 12, 127.	6.2	28
17	Continuous self-provided fermentation for microbial lipids production from acetate by using oleaginous yeasts Cryptococcus podzolicus and Trichosporon porosum. Renewable Energy, 2020, 146, 737-743.	8.9	26
18	Lipase-Catalyzed Synthesis of Sugar Esters in Honey and Agave Syrup. Frontiers in Chemistry, 2018, 6, 24.	3.6	24

KATRIN OCHSENREITHER

#	Article	IF	CITATIONS
19	Optimization of Glycolipid Synthesis in Hydrophilic Deep Eutectic Solvents. Frontiers in Bioengineering and Biotechnology, 2020, 8, 382.	4.1	24
20	Evaluation of Downstream Processing, Extraction, and Quantification Strategies for Single Cell Oil Produced by the Oleaginous Yeasts Saitozyma podzolica DSM 27192 and Apiotrichum porosum DSM 27194. Frontiers in Bioengineering and Biotechnology, 2020, 8, 355.	4.1	23
21	Increased Lipid Production in <i>Yarrowia lipolytica</i> from Acetate through Metabolic Engineering and Cosubstrate Fermentation. ACS Synthetic Biology, 2021, 10, 3129-3138.	3.8	23
22	Aestipascuomyces dupliciliberans gen. nov, sp. nov., the First Cultured Representative of the Uncultured SK4 Clade from Aoudad Sheep and Alpaca. Microorganisms, 2020, 8, 1734.	3.6	21
23	Acetate as substrate for l-malic acid production with Aspergillus oryzae DSM 1863. Biotechnology for Biofuels, 2021, 14, 48.	6.2	21
24	Genomic insights into the lifestyles, functional capacities and oleagenicity of members of the fungal family Trichosporonaceae. Scientific Reports, 2020, 10, 2780.	3.3	19
25	Evaluation of Pyrolysis Oil as Carbon Source for Fungal Fermentation. Frontiers in Microbiology, 2016, 07, 2059.	3.5	18
26	Potentially biocompatible polyacrylamides derived by the Ugi four-component reaction. European Polymer Journal, 2015, 65, 313-324.	5.4	17
27	Draft Genome Sequence of the Oleaginous Yeast <i>Saitozyma podzolica</i> (syn. <i>Cryptococcus) Tj ETQq1</i>	1 0.78431	4 rgBT /Overlo
28	Optimization of carbon source efficiency for lipid production with the oleaginous yeast Saitozyma podzolica DSM 27192 applying automated continuous feeding. Biotechnology for Biofuels, 2020, 13, 181.	6.2	15
29	Lipase-Catalyzed Production of Sorbitol Laurate in a "2-in-1―Deep Eutectic System: Factors Affecting the Synthesis and Scalability. Molecules, 2021, 26, 2759.	3.8	14
30	Draft Genome Sequence of the Oleaginous Yeast <i>Apiotrichum porosum</i> (syn. <i>Trichosporon) Tj ETQq0</i>	0 0 rgBT /0	Overlock 10 T
31	Valorization of Crude Glycerol into Citric Acid and Malic Acid by <i>Yarrowia lipolytica</i> . Industrial & Engineering Chemistry Research, 2020, 59, 17165-17172.	3.7	12
32	Interfacial and Foaming Properties of Tailor-Made Glycolipids—Influence of the Hydrophilic Head Group and Functional Groups in the Hydrophobic Tail. Molecules, 2020, 25, 3797.	3.8	12
33	Microwave-Assisted One-Pot Lipid Extraction and Glycolipid Production from Oleaginous Yeast Saitozyma podzolica in Sugar Alcohol-Based Media. Molecules, 2021, 26, 470.	3.8	12
34	Isolation and Biochemical Characterization of Six Anaerobic Fungal Strains from Zoo Animal Feces. Microorganisms, 2021, 9, 1655.	3.6	11
35	Global Transcriptome Profile of the Oleaginous Yeast Saitozyma podzolica DSM 27192 Cultivated in Glucose and Xylose. Journal of Fungi (Basel, Switzerland), 2021, 7, 758.	3.5	11
36	Pulsed Electric Field Treatment Promotes Lipid Extraction on Fresh Oleaginous Yeast Saitozyma podzolica DSM 27192. Frontiers in Bioengineering and Biotechnology, 2020, 8, 575379.	4.1	10

KATRIN OCHSENREITHER

#	Article	IF	CITATIONS
37	Detoxification of a pyrolytic aqueous condensate from wheat straw for utilization as substrate in Aspergillus oryzae DSM 1863 cultivations. , 2022, 15, 18.		10
38	Enzymatic Synthesis of Alkyl Glucosides by <i>β</i> â€Glucosidases in a 2â€inâ€1 Deep Eutectic Solvent System. Chemie-Ingenieur-Technik, 2022, 94, 417-426.	0.8	9
39	Enhanced l-Malic Acid Production by Aspergillus oryzae DSM 1863 Using Repeated-Batch Cultivation. Frontiers in Bioengineering and Biotechnology, 2021, 9, 760500.	4.1	9
40	Process development for the elucidation of mycotoxin formation in Alternaria alternata. AMB Express, 2011, 1, 27.	3.0	8
41	In silico Proteomic Analysis Provides Insights Into Phylogenomics and Plant Biomass Deconstruction Potentials of the Tremelalles. Frontiers in Bioengineering and Biotechnology, 2020, 8, 226.	4.1	8
42	Immobilization of Aspergillus oryzae DSM 1863 for l-Malic Acid Production. Fermentation, 2022, 8, 26.	3.0	8
43	Valorization of a Pyrolytic Aqueous Condensate and Its Main Components for L-Malic Acid Production with Aspergillus oryzae DSM 1863. Fermentation, 2022, 8, 107.	3.0	8
44	Coâ€production of microbial lipids with valuable chemicals. Biofuels, Bioproducts and Biorefining, 2021, 15, 945-954.	3.7	7
45	Comparative study on interfacial and foaming properties of glycolipids in relation to the gas applied for foam generation. RSC Advances, 2021, 11, 34235-34244.	3.6	6
46	The Complex Way to Sustainability: Petroleum-Based Processes versus Biosynthetic Pathways in the Formation of C4 Chemicals from Syngas. Industrial & Engineering Chemistry Research, 2019, 58, 15863-15871.	3.7	5
47	Evaluating the effect of cultivation conditions on palmitoleic acidâ€rich lipid production by <scp><i>Scheffersomyces segobiensis</i> DSM</scp> 27193. Biofuels, Bioproducts and Biorefining, 2021, 15, 1859-1870.	3.7	4
48	Microbial Production of Value-Added Chemicals from Pyrolysis Oil and Syngas. , 2016, , 69-105.		2
49	The draft genome sequence of Scheffersomyces segobiensis strain DSM 27193, a yeast capable of producing palmitoleic acid-rich lipids. 3 Biotech, 2021, 11, 488.	2.2	2
50	Production of palmitoleic acid by oleaginous yeast Scheffersomyces segobiensis DSM 27193 using systematic dissolved oxygen regulation strategy. Chinese Journal of Chemical Engineering, 2023, 53, 324-331.	3.5	2
51	Parameters Influencing Lipase-Catalyzed Glycolipid Synthesis by (Trans-)Esterification Reaction. Advances in Biochemical Engineering/Biotechnology, 2021, , .	1.1	1
52	Characterization and Phylogenetic Analysis of a Novel GH43 Î ² -Xylosidase From Neocallimastix californiae. Frontiers in Fungal Biology, 2021, 2, .	2.0	0