Sabine Mai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5170676/publications.pdf Version: 2024-02-01

SARINE MAL

#	Article	IF	CITATIONS
1	Transient Anomalous Diffusion of Telomeres in the Nucleus of Mammalian Cells. Physical Review Letters, 2009, 103, 018102.	7.8	415
2	Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response. Nature, 2007, 448, 1063-1067.	27.8	296
3	Cyclin E amplification/overexpression is a mechanism of trastuzumab resistance in HER2 ⁺ breast cancer patients. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3761-3766.	7.1	291
4	Fus deficiency in mice results in defective B-lymphocyte development and activation, high levels of chromosomal instability and perinatal death. Nature Genetics, 2000, 24, 175-179.	21.4	265
5	Loss of lamin A function increases chromatin dynamics in the nuclear interior. Nature Communications, 2015, 6, 8044.	12.8	230
6	Granzyme B (GraB) Autonomously Crosses the Cell Membrane and Perforin Initiates Apoptosis and GraB Nuclear Localization. Journal of Experimental Medicine, 1997, 185, 855-866.	8.5	216
7	Novel roles for A-type lamins in telomere biology and the DNA damage response pathway. EMBO Journal, 2009, 28, 2414-2427.	7.8	208
8	Genomic instability and apoptosis are frequent in p53 deficient young mice. Oncogene, 1997, 15, 1295-1302.	5.9	180
9	Activation of Rat Alveolar Macrophage-Derived Latent Transforming Growth Factor β-1 by Plasmin Requires Interaction with Thrombospondin-1 and its Cell Surface Receptor, CD36. American Journal of Pathology, 1999, 155, 841-851.	3.8	166
10	c-Myc induces chromosomal rearrangements through telomere and chromosome remodeling in the interphase nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9613-9618.	7.1	142
11	The three-dimensional organization of telomeres in the nucleus of mammalian cells. BMC Biology, 2004, 2, 12.	3.8	122
12	ATM–Chk2–p53 activation prevents tumorigenesis at an expense of organ homeostasis upon Brca1 deficiency. EMBO Journal, 2006, 25, 2167-2177.	7.8	103
13	c-MYC-Induced Genomic Instability. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a014373-a014373.	6.2	101
14	Genomic instability in MycER-activated Rat1A-MycER cells. Chromosome Research, 1996, 4, 365-371.	2.2	91
15	Characterizing the three-dimensional organization of telomeres. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2005, 67A, 144-150.	1.5	88
16	Dense ore and diffuse Aβ plaques in TgCRND8 mice studied with synchrotron FTIR microspectroscopy. Biopolymers, 2007, 87, 207-217.	2.4	88
17	Homozygous <i>BUB1B</i> Mutation and Susceptibility to Gastrointestinal Neoplasia. New England Journal of Medicine, 2010, 363, 2628-2637.	27.0	82
18	The significance of telomeric aggregates in the interphase nuclei of tumor cells. Journal of Cellular Biochemistry, 2006, 97, 904-915.	2.6	80

#	Article	IF	CITATIONS
19	Formation of non-random extrachromosomal elements during development, differentiation and oncogenesis. Seminars in Cancer Biology, 2007, 17, 56-64.	9.6	75
20	The 3D nuclear organization of telomeres marks the transition from Hodgkin to Reed–Sternberg cells. Leukemia, 2009, 23, 565-573.	7.2	70
21	Chromosomal rearrangements after ex vivo Epstein–Barr virus (EBV) infection of human B cells. Oncogene, 2010, 29, 503-515.	5.9	59
22	The c-myc protein represses the \hat{l} »5 and TdT initiators. Nucleic Acids Research, 1995, 23, 1-9.	14.5	53
23	Radiation-induced activation of transcription factors in mammalian cells. Radiation and Environmental Biophysics, 1990, 29, 303-313.	1.4	50
24	Overexpression of c-myc precedes amplification of the gene encoding dihydrofolate reductase. Gene, 1994, 148, 253-260.	2.2	50
25	Dynamic chromosomal rearrangements in Hodgkin's lymphoma are due to ongoing three-dimensional nuclear remodeling and breakage-bridge-fusion cycles. Haematologica, 2010, 95, 2038-2046.	3.5	49
26	c-Myc-Induced Genomic Instability. Journal of Environmental Pathology, Toxicology and Oncology, 2003, 22, 179-200.	1.2	48
27	Initiation of telomereâ€mediated chromosomal rearrangements in cancer. Journal of Cellular Biochemistry, 2010, 109, 1095-1102.	2.6	47
28	Oncogenic Remodeling of the Three-Dimensional Organization of the Interphase Nucleus: c-Myc Induces Telomeric Aggregates Whose Formation Precedes Chromosomal Rearrangements. Cell Cycle, 2005, 4, 1327-1331.	2.6	46
29	Three-dimensional Nuclear Telomere Architecture Is Associated with Differential Time to Progression and Overall Survival in Glioblastoma Patients. Neoplasia, 2010, 12, 183-191.	5.3	46
30	Three-dimensional Telomere Signatures of Hodgkin- and Reed-Sternberg Cells at Diagnosis Identify Patients with Poor Response to Conventional Chemotherapy. Translational Oncology, 2012, 5, 269-277.	3.7	46
31	Lamin A/C: Function in Normal and Tumor Cells. Cancers, 2020, 12, 3688.	3.7	46
32	C-Myc binds to 5′ flanking sequence motifs of the dihydrofolate reductase gene in cellular extracts: role in proliferation. Nucleic Acids Research, 1994, 22, 2264-2273.	14.5	45
33	Chromosomal and Extrachromosomal Instability of the cyclin D2 Gene is Induced by Myc Overexpression. Neoplasia, 1999, 1, 241-252.	5.3	42
34	LMP1 mediates multinuclearity through downregulation of shelterin proteins and formation of telomeric aggregates. Blood, 2015, 125, 2101-2110.	1.4	42
35	Profiling Three-Dimensional Nuclear Telomeric Architecture of Myelodysplastic Syndromes and Acute Myeloid Leukemia Defines Patient Subgroups. Clinical Cancer Research, 2012, 18, 3293-3304.	7.0	40
36	Plasma microRNA signature is associated with risk stratification in prostate cancer patients. International Journal of Cancer, 2017, 141, 1231-1239.	5.1	40

#	Article	IF	CITATIONS
37	c-MYC overexpression in Ba/F3 cells simultaneously elicits genomic instability and apoptosis. Oncogene, 2002, 21, 2981-2990.	5.9	38
38	Loss of HLTF function promotes intestinal carcinogenesis. Molecular Cancer, 2012, 11, 18.	19.2	37
39	Shattered and stitched chromosomes—chromothripsis and chromoanasynthesis—manifestations of a new chromosome crisis?. Genes Chromosomes and Cancer, 2012, 51, 975-981.	2.8	36
40	Genetic Landscape of Papillary Thyroid Carcinoma and Nuclear Architecture: An Overview Comparing Pediatric and Adult Populations. Cancers, 2020, 12, 3146.	3.7	35
41	Three-Dimensional Quantitative Imaging of Telomeres in Buccal Cells Identifies Mild, Moderate, and Severe Alzheimer's Disease Patients. Journal of Alzheimer's Disease, 2014, 39, 35-48.	2.6	34
42	3D Telomere FISH defines LMP1-expressing Reed–Sternberg cells as end-stage cells with telomere-poor †ghost' nuclei and very short telomeres. Laboratory Investigation, 2010, 90, 611-619.	3.7	30
43	The ribonucleotide reductase R2 gene is a non-transcribed target of c-Myc-induced genomic instability. Gene, 1999, 238, 351-365.	2.2	29
44	Three-Dimensional Telomeric Analysis of Isolated Circulating Tumor Cells (CTCs) Defines CTC Subpopulations. Translational Oncology, 2013, 6, 51-IN4.	3.7	29
45	Imaging chromatin nanostructure with binding-activated localization microscopy based on DNA structure fluctuations. Nucleic Acids Research, 2017, 45, gkw1301.	14.5	29
46	c-Myc initiates illegitimate replication of the ribonucleotide reductase R2 gene. Oncogene, 2002, 21, 909-920.	5.9	28
47	The threeâ€dimensional cancer nucleus. Genes Chromosomes and Cancer, 2019, 58, 462-473.	2.8	26
48	c-Myc-Induced Extrachromosomal Elements Carry Active Chromatin. Neoplasia, 2003, 5, 110-120.	5.3	25
49	c-Myc—Dependent Formation of Robertsonian Translocation Chromosomes in Mouse Cells. Neoplasia, 2007, 9, 578-IN1.	5.3	25
50	EGF receptor inhibitors in the treatment of glioblastoma multiform: Old clinical allies and newly emerging therapeutic concepts. European Journal of Pharmacology, 2009, 625, 23-30.	3.5	25
51	Image filtering in structured illumination microscopy using the Lukosz bound. Optics Express, 2013, 21, 24431.	3.4	25
52	Cell cycle-dependent 3D distribution of telomeres and telomere repeat-binding factor 2 (TRF2) in HaCaT and HaCaT-myc cells. European Journal of Cell Biology, 2004, 83, 681-690.	3.6	24
53	Alterations of centromere positions in nuclei of immortalized and malignant mouse lymphocytes. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2007, 71A, 386-392. -	1.5	24
54	Filtration-based enrichment of circulating tumor cells from all prostate cancer risk groups. Urologic Oncology: Seminars and Original Investigations, 2017, 35, 300-309.	1.6	23

#	Article	IF	CITATIONS
55	c-Myc-Associated Genomic Instability of the Dihydrofolate Reductase Locus in Vivo. Cancer Detection and Prevention, 1998, 22, 350-356.	2.1	23
56	Nuclear Remodeling as a Mechanism for Genomic Instability in Cancer. Advances in Cancer Research, 2011, 112, 77-126.	5.0	22
57	Differences in Nuclear DNA Organization Between Lymphocytes, Hodgkin and Reed–Sternberg Cells Revealed by Structured Illumination Microscopy. Journal of Cellular Biochemistry, 2014, 115, 1441-1448.	2.6	22
58	Distinct 3D Structural Patterns of Lamin A/C Expression in Hodgkin and Reed-Sternberg Cells. Cancers, 2018, 10, 286.	3.7	22
59	Mining Gene Expression Signature for the Detection of Pre-Malignant Melanocytes and Early Melanomas with Risk for Metastasis. PLoS ONE, 2012, 7, e44800.	2.5	20
60	DNA methylation screening of primary prostate tumors identifies SRD5A2 and CYP11A1 as candidate markers for assessing risk of biochemical recurrence. Prostate, 2015, 75, 1790-1801.	2.3	20
61	Deregulated expression of c-Myc in a translocation-negative plasmacytoma on extrachromosomal elements that carry <i>IgH</i> and <i>myc</i> genes. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 13967-13972.	7.1	19
62	Three-dimensional Nuclear Telomere Organization in Multiple Myeloma. Translational Oncology, 2013, 6, 749-IN36.	3.7	19
63	Telomeric aggregates and end-to-end chromosomal fusions require myc box II. Oncogene, 2007, 26, 1398-1406.	5.9	18
64	Fluorescence in situ hybridization analysis of hobo, mdg1 and Dm412 transposable elements reveals genomic instability following the Drosophila melanogaster genome sequencing. Heredity, 2007, 99, 525-530.	2.6	18
65	Generation of functional scFv intrabody to abate the expression of CD147 surface molecule of 293A cells. BMC Biotechnology, 2008, 8, 5.	3.3	18
66	3D nuclear organization of telomeres in the Hodgkin cell lines U-HO1 and U-HO1-PTPN1: PTPN1 expression prevents the formation of very short telomeres including "t-stumps". BMC Cell Biology, 2010, 11, 99.	3.0	18
67	Telomere-Centromere-Driven Genomic Instability Contributes to Karyotype Evolution in a Mouse Model of Melanoma. Neoplasia, 2010, 12, 11-IN4.	5.3	18
68	Genomic Instability: The Driving Force behind Refractory/Relapsing Hodgkin's Lymphoma. Cancers, 2013, 5, 714-725.	3.7	18
69	Genomic Analysis of Localized High-Risk Prostate Cancer Circulating Tumor Cells at the Single-Cell Level. Cells, 2020, 9, 1863.	4.1	18
70	Extracellular vesicles from genetically unstable, oncogene-driven cancer cells trigger micronuclei formation in endothelial cells. Scientific Reports, 2020, 10, 8532.	3.3	18
71	Rearrangements of the telomeric region of mouse chromosome 11 in Pre-B ABL/MYC cells revealed by mBANDing, spectral karyotyping, and fluorescence in-situ hybridization with a subtelomeric probe. Chromosome Research, 2004, 12, 777-785.	2.2	17
72	Centromeres in cell division, evolution, nuclear organization and disease. Journal of Cellular Biochemistry, 2008, 104, 2040-2058.	2.6	17

#	Article	IF	CITATIONS
73	Identification of Neuroblastoma Subgroups Based on Three-Dimensional Telomere Organization. Translational Oncology, 2016, 9, 348-356.	3.7	17
74	Regulatory role of cathepsin L in induction of nuclear laminopathy in Alzheimer's disease. Aging Cell, 2022, 21, e13531.	6.7	17
75	Recurrent trisomy and Robertsonian translocation of chromosome 14 in murine iPS cell lines. Chromosome Research, 2011, 19, 857-868.	2.2	16
76	Increased genomic instability and altered chromosomal protein phosphorylation timing in <i>HRAS</i> â€ŧransformed mouse fibroblasts. Genes Chromosomes and Cancer, 2009, 48, 397-409.	2.8	15
77	Different <i>TP53</i> mutations are associated with specific chromosomal rearrangements, telomere length changes, and remodeling of the nuclear architecture of telomeres. Genes Chromosomes and Cancer, 2014, 53, 934-950.	2.8	15
78	Quantitative Superresolution Microscopy Reveals Differences in Nuclear DNA Organization of Multiple Myeloma and Monoclonal Gammopathy of Undetermined Significance. Journal of Cellular Biochemistry, 2015, 116, 704-710.	2.6	15
79	LMP1 and Dynamic Progressive Telomere Dysfunction: A Major Culprit in EBV-Associated Hodgkin's Lymphoma. Viruses, 2017, 9, 164.	3.3	15
80	Clonal evolution through genetic bottlenecks and telomere attrition: Potential threats to in vitro data reproducibility. Genes Chromosomes and Cancer, 2019, 58, 452-461.	2.8	15
81	Metaphase FISHing of transgenic mice recommended: FISH and SKY define BACâ€mediated balanced translocation. Genesis, 2003, 36, 134-141.	1.6	14
82	Nuclear imaging in three dimensions: A unique tool in cancer research. Annals of Anatomy, 2010, 192, 292-301.	1.9	14
83	DNA Superresolution Structure of Reed–Sternberg Cells Differs Between Longâ€Lasting Remission Versus Relapsing Hodgkin's Lymphoma Patients. Journal of Cellular Biochemistry, 2016, 117, 1633-1637.	2.6	14
84	Disruption of direct 3D telomere–TRF2 interaction through two molecularly disparate mechanisms is a hallmark of primary Hodgkin and Reed–Sternberg cells. Laboratory Investigation, 2017, 97, 772-781.	3.7	14
85	Characterizing the threeâ€dimensional organization of telomeres in papillary thyroid carcinoma cells. Journal of Cellular Physiology, 2019, 234, 5175-5185.	4.1	14
86	Chromosomal Instability in Acute Myeloid Leukemia. Cancers, 2021, 13, 2655.	3.7	14
87	Uncoupling of genomic instability and tumorigenesis in a mouse model of Burkitt's lymphoma expressing a conditional box II-deleted Myc protein. Oncogene, 2005, 24, 2944-2953.	5.9	13
88	Premalignant Cervical Lesions Are Characterized by Dihydrofolate Reductase Gene Amplification and c-Myc Overexpression. Journal of Lower Genital Tract Disease, 2007, 11, 265-272.	1.9	13
89	3D structural and functional characterization of the transition from Hodgkin to Reed-Sternberg cells. Annals of Anatomy, 2010, 192, 302-308.	1.9	13
90	p53 functions and cell lines: Have we learned the lessons from the past?. BioEssays, 2010, 32, 392-400.	2.5	13

#	Article	IF	CITATIONS
91	XPO1 Inhibition Preferentially Disrupts the 3D Nuclear Organization of Telomeres in Tumor Cells. Journal of Cellular Physiology, 2016, 231, 2711-2719.	4.1	13
92	Superâ€resolution structure of DNA significantly differs in buccal cells of controls and Alzheimer's patients. Journal of Cellular Physiology, 2017, 232, 2387-2395.	4.1	13
93	Distinct and shared threeâ€dimensional chromosome organization patterns in lymphocytes, monoclonal gammopathy of undetermined significance and multiple myeloma. International Journal of Cancer, 2017, 140, 400-410.	5.1	13
94	Super-resolution binding activated localization microscopy through reversible change of DNA conformation. Nucleus, 2018, 9, 182-189.	2.2	13
95	Cancer-Specific Nuclear Positioning of Translocation Prone Gene Loci In Non-Malignant B-Cells From Patients with Multiple Myeloma. Blood, 2010, 116, 783-783.	1.4	13
96	Choices for tissue visualization with IR microspectroscopy. Vibrational Spectroscopy, 2005, 38, 133-141.	2.2	12
97	Mitogen-induced distinct epialleles are phosphorylated at either H3S10 or H3S28, depending on H3K27 acetylation. Molecular Biology of the Cell, 2017, 28, 817-824.	2.1	12
98	Telomere Architecture Correlates with Aggressiveness in Multiple Myeloma. Cancers, 2021, 13, 1969.	3.7	12
99	Cyclin D expression in chronic lymphocytic leukemia. Leukemia and Lymphoma, 2005, 46, 1275-1285.	1.3	11
100	Binding of multivalent CD147 phage induces apoptosis of U937 cells. International Immunology, 2006, 18, 1159-1169.	4.0	11
101	Novel automated threeâ€dimensional genome scanning based on the nuclear architecture of telomeres. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2011, 79A, 159-166.	1.5	11
102	<scp>MYCN</scp> overexpression is associated with unbalanced copy number gain, altered nuclear location, and overexpression of chromosome arm 17q genes in neuroblastoma tumors and cell lines. Genes Chromosomes and Cancer, 2015, 54, 616-628.	2.8	11
103	Advancing Risk Assessment of Intermediate Risk Prostate Cancer Patients. Cancers, 2019, 11, 855.	3.7	11
104	Quantitative 3D Telomeric Imaging of Buccal Cells Reveals Alzheimer's Disease-Specific Signatures. Journal of Alzheimer's Disease, 2017, 58, 139-145.	2.6	10
105	Aqueous mounting media increasing tissue translucence improve image quality in Structured Illumination Microscopy of thick biological specimen. Scientific Reports, 2018, 8, 13971.	3.3	10
106	Long-Term Dynamics of Three Dimensional Telomere Profiles in Circulating Tumor Cells in High-Risk Prostate Cancer Patients Undergoing Androgen-Deprivation and Radiation Therapy. Cancers, 2019, 11, 1165.	3.7	10
107	The impact of p53 loss on murine plasmacytoma development. Chromosome Research, 2002, 10, 239-251.	2.2	9
108	Nucleosomal response, immediate-early gene expression and cell transformation. Advances in Enzyme Regulation, 2010, 50, 135-145.	2.6	9

#	Article	IF	CITATIONS
109	Inversion and deletion of 16q22 defined by array CGH, FISH, and RT-PCR in a patient with AML. Cancer Genetics, 2011, 204, 344-347.	0.4	9
110	3D imaging of telomeres and nuclear architecture: An emerging tool of 3D nanoâ€morphologyâ€based diagnosis. Journal of Cellular Physiology, 2011, 226, 859-867.	4.1	9
111	Selected Telomere Length Changes and Aberrant Three-dimensional Nuclear Telomere Organization during Fast-Onset Mouse Plasmacytomas. Neoplasia, 2012, 14, 344-351.	5.3	9
112	Differential nuclear organization of translocationâ€prone genes in nonmalignant B cells from patients with t(14;16) as compared with t(4;14) or t(11;14) myeloma. Genes Chromosomes and Cancer, 2013, 52, 523-537.	2.8	8
113	Three-Dimensional Telomere Dynamics in Follicular Thyroid Cancer. Thyroid, 2014, 24, 296-304.	4.5	8
114	Assessment of the clinical relevance of 17q25.3 copy number and three-dimensional telomere organization in non-small lung cancer patients. Journal of Cancer Research and Clinical Oncology, 2016, 142, 749-756.	2.5	8
115	Genomic Instability in Circulating Tumor Cells. Cancers, 2020, 12, 3001.	3.7	8
116	Duplication of Subcytoband 11E2 of Chromosome 11 Is Regularly Associated with Accelerated Tumor Development in v-abl/myc-Induced Mouse Plasmacytomas. Genes and Cancer, 2010, 1, 847-858.	1.9	7
117	Threeâ€dimensional nuclear telomere architecture changes during endometrial carcinoma development. Genes Chromosomes and Cancer, 2013, 52, 716-732.	2.8	7
118	Nuclear remodeling of telomeres in chronic myeloid leukemia. Genes Chromosomes and Cancer, 2013, 52, 495-502.	2.8	7
119	Three-dimensional structured illumination microscopy using Lukosz bound apodization reduces pixel negativity at no resolution cost. Optics Express, 2014, 22, 11215.	3.4	7
120	Distinct nuclear orientation patterns for mouse chromosome 11 in normal B lymphocytes. BMC Cell Biology, 2014, 15, 22.	3.0	7
121	The Use of 3D Telomere FISH for the Characterization of the Nuclear Architecture in EBV-Positive Hodgkin's Lymphoma. Methods in Molecular Biology, 2017, 1532, 93-104.	0.9	7
122	Global Interactomics Connect Nuclear Mitotic Apparatus Protein NUMA1 to Influenza Virus Maturation. Viruses, 2018, 10, 731.	3.3	7
123	3D Telomere Structure Analysis to DetectGenomic Instability and Cytogenetic Evolutionin Myelodysplastic Syndromes. Cells, 2019, 8, 304.	4.1	7
124	Depletion of Trichoplein (TpMs) Causes Chromosome Mis-Segregation, DNA Damage and Chromosome Instability in Cancer Cells. Cancers, 2020, 12, 993.	3.7	7
125	C-myc overexpression facilitates radiation-induced DHFR gene amplification. International Journal of Radiation Biology, 1997, 71, 167-175.	1.8	6
126	Heterozygous mutations in the <i>PALB2</i> hereditary breast cancer predisposition gene impact on the threeâ€dimensional nuclear organization of patientâ€derived cell lines. Genes Chromosomes and Cancer, 2013, 52, 480-494.	2.8	6

#	Article	IF	CITATIONS
127	Dynamics of three-dimensional telomere profiles of circulating tumor cells in patients with high-risk prostate cancer who are undergoing androgen deprivation and radiation therapies. Urologic Oncology: Seminars and Original Investigations, 2017, 35, 112.e1-112.e11.	1.6	6
128	Near-field infrared nanospectroscopy and super-resolution fluorescence microscopy enable complementary nanoscale analyses of lymphocyte nuclei. Analyst, The, 2018, 143, 5926-5934.	3.5	6
129	Telomeres, Genomic Instability, DNA Repair and Breast Cancer. Current Medicinal Chemistry Anti-inflammatory & Anti-allergy Agents, 2005, 4, 421-428.	0.4	5
130	Non-random genomic instability in cancer: A fact, not an illusion. Seminars in Cancer Biology, 2007, 17, 1-4.	9.6	5
131	Translocation frequencies and chromosomal proximities for selected mouse chromosomes in primary B lymphocytes. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2011, 79A, 276-283.	1.5	5
132	An intact putative mouse telomerase essential Nâ€ŧerminal domain is necessary for proper telomere maintenance. Biology of the Cell, 2016, 108, 96-112.	2.0	5
133	Differential positioning and close spatial proximity of translocationâ€prone genes in nonmalignant Bâ€cells from multiple myeloma patients. Genes Chromosomes and Cancer, 2012, 51, 727-742.	2.8	4
134	p53 CRISPR Deletion Affects DNA Structure and Nuclear Architecture. Journal of Clinical Medicine, 2020, 9, 598.	2.4	4
135	A Multifocal Pediatric Papillary Thyroid Carcinoma (PTC) Harboring the AGK-BRAF and RET/PTC3 Fusion in a Mutually Exclusive Pattern Reveals Distinct Levels of Genomic Instability and Nuclear Organization. Biology, 2021, 10, 125.	2.8	4
136	Elongated mouse chromosomes suitable for enhanced molecular cytogenetics. Cytotechnology, 2004, 44, 143-149.	1.6	3
137	A new der(1;7)(q10;p10) leading to a singular 1p loss in a case of glioblastoma with oligodendroglioma component. Neuropathology, 2014, 34, 170-178.	1.2	3
138	Changes in Nuclear Orientation Patterns of Chromosome 11 during Mouse Plasmacytoma Development. Translational Oncology, 2015, 8, 417-423.	3.7	3
139	Measuring murine chromosome orientation in interphase nuclei. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2015, 87, 733-740.	1.5	3
140	<i>FGFR3</i> preferentially colocalizes with <i>IGH</i> in the interphase nucleus of multiple myeloma patient Bâ€cells when <i>FGFR3</i> is located outside of CT4. Genes Chromosomes and Cancer, 2016, 55, 962-974.	2.8	3
141	Three-dimensional telomere architecture of esophageal squamous cell carcinoma: comparison of tumor and normal epithelial cells. Ecological Management and Restoration, 2016, 29, 307-313.	0.4	3
142	MYCN overexpression is linked to significant differences in nuclear DNA organization in neuroblastoma. , 2019, , .		3
143	Risk Stratification and Treatment in Smoldering Multiple Myeloma. Cells, 2022, 11, 130.	4.1	3
144	FISH on purified extrachromosomal DNA molecules. Technical Tips Online, 1999, 4, 75-79.	0.2	2

#	Article	IF	CITATIONS
145	c-Myc Deregulation Promotes a Complex Network of Genomic Instability. , 2005, , 87-97.		2
146	Distinct Nuclear Organization of Telomeresand Centromeres in Monoclonal Gammopathyof Undetermined Significance and Multiple Myeloma. Cells, 2019, 8, 723.	4.1	2
147	Three-Dimensional Nuclear Telomere Profiling as a Biomarker for Recurrence in Oligodendrogliomas: A Pilot Study. International Journal of Molecular Sciences, 2020, 21, 8539.	4.1	2
148	Rapid Separation of Mononuclear Hodgkin from Multinuclear Reed-Sternberg Cells. Laboratory Hematology: Official Publication of the International Society for Laboratory Hematology, 2014, 20, 2-6.	1.2	2
149	Genomic instability and circulating tumor cells in prostate cancer. Translational Cancer Research, 2018, 7, S192-S196.	1.0	2
150	Chromosome Territories in Hematological Malignancies. Cells, 2022, 11, 1368.	4.1	2
151	Editorial (Thematic Issue: Towards New Approaches in Alzheimer's Research and Alzheimer's Disease). Current Alzheimer Research, 2016, 13, 728-729.	1.4	1
152	Study of Telomere Dysfunction in TP53 Mutant LoVo Cell Lines as a Model for Genomic Instability. Methods in Molecular Biology, 2018, 1769, 209-230.	0.9	1
153	Introduction to the special issue "3D nuclear architecture of the genome― Genes Chromosomes and Cancer, 2019, 58, 405-406.	2.8	1
154	Three-Dimensional Telomeric Fingerprint of Mycosis Fungoides and/or Sézary Syndrome: A Pilot Study. Journal of Investigative Dermatology, 2021, 141, 1598-1601.e4.	0.7	1
155	Abstract 2727: The three-dimensional nuclear organization of telomeres during endometrial carcinoma development. , 2011, , .		1
156	3D Telomere Dynamics In Hodgkin's Lymphoma. Blood, 2010, 116, 745-745.	1.4	1
157	Disruption of Direct 3-Dimensional (3D) Telomere-TRF2 (Telomere Related Factor 2) Interaction Is a Hallmark of Primary Hodgkin (H) and Reed-Sternberg (RS) Cells. Blood, 2015, 126, 177-177.	1.4	1
158	Telomere profile of Reed-Sternberg and Hodgkin cells in diagnostic biopsy in Hodgkin lymphoma as a predictor of clinical response Journal of Clinical Oncology, 2015, 33, 8541-8541.	1.6	1
159	Three-Dimensional Telomere Analysis Using Teloview® Technology Predicts the Response of Classic Hodgkin's Lymphoma Patients to First Line Therapy at Point of Diagnosis. Blood, 2020, 136, 36-37.	1.4	1
160	Three-dimensional telomere profiles in papillary thyroid cancer variants: a pilot study. Bosnian Journal of Basic Medical Sciences, 2021, , .	1.0	1
161	Three-dimensional analysis tool for segmenting and measuring the structure of telomeres in mammalian nuclei. , 2005, , .		0
162	3D nuclear organization and genomic instability in cancer. BMC Proceedings, 2013, 7, K17.	1.6	0

#	Article	IF	CITATIONS
163	Expression of Genes Associated with Telomere Homeostasis in TP53 Mutant LoVo Cell Lines as a Model for Genomic Instability. Methods in Molecular Biology, 2018, 1769, 253-262.	0.9	0
164	3D Nuclear Organization of Telomeres in Hodgkin and Reed-Sternberg Cells Blood, 2007, 110, 382-382.	1.4	0
165	3D Telomeric Profiles of MGUS, MMN and Relapsed MM. Blood, 2011, 118, 2899-2899.	1.4	0
166	Three-Dimensional Nuclear Telomeric Organization (3D) of Chronic Myeloid Leukemia Patients Predicts Accelerated Phase and Blast Crisis Blood, 2012, 120, 2771-2771.	1.4	0
167	Abstract B19: Three-dimensional nuclear telomere organization and clinical significance in non-small cell lung cancer patients Clinical Cancer Research, 2014, 20, B19-B19.	7.0	0
168	Three-dimensional (3D) telomeric architecture of esophageal squamous cell carcinoma Journal of Clinical Oncology, 2014, 32, e15048-e15048.	1.6	0
169	3D Telomeric Fingerprint of Advanced Cutaneous T-Cell Lymphoma. Blood, 2019, 134, 1501-1501.	1.4	0
170	Three-Dimensional Telomere Analysis Using Teloview® Technology Identifies Smouldering Myeloma Patients with High Risk of Progression to Full Stage Multiple Myeloma in a Proof of Concept Cohort. Blood, 2020, 136, 19-20.	1.4	0
171	Telomere Dysfunction Is Associated with Altered DNA Organization in Trichoplein/Tchp/Mitostatin (TpMs) Depleted Cells. Biomedicines, 2022, 10, 1602.	3.2	0