
Davide Corti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5170634/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SARS-CoV-2 breakthrough infections elicit potent, broad, and durable neutralizing antibody responses. Cell, 2022, 185, 872-880.e3.	13.5	165
2	Antibody-mediated broad sarbecovirus neutralization through ACE2 molecular mimicry. Science, 2022, 375, 449-454.	6.0	108
3	Predicting the mutational drivers of future SARS-CoV-2 variants of concern. Science Translational Medicine, 2022, 14, eabk3445.	5.8	101
4	An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nature Medicine, 2022, 28, 490-495.	15.2	577
5	Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature, 2022, 603, 706-714.	13.7	756
6	Poor neutralization and rapid decay of antibodies to SARS-CoV-2 variants in vaccinated dialysis patients. PLoS ONE, 2022, 17, e0263328.	1.1	21
7	A SARS-CoV-2 variant elicits an antibody response with a shifted immunodominance hierarchy. PLoS Pathogens, 2022, 18, e1010248.	2.1	48
8	Monoclonal antibodies against rabies: current uses in prophylaxis and in therapy. Current Opinion in Virology, 2022, 53, 101204.	2.6	21
9	Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature, 2022, 602, 664-670.	13.7	917
10	Structural basis of SARS-CoV-2 Omicron immune evasion and receptor engagement. Science, 2022, 375, 864-868.	6.0	394
11	Structure, receptor recognition, and antigenicity of the human coronavirus CCoV-HuPn-2018 spike glycoprotein. Cell, 2022, 185, 2279-2291.e17.	13.5	25
12	Structure of the rabies virus glycoprotein trimer bound to a prefusion-specific neutralizing antibody. Science Advances, 2022, 8, .	4.7	16
13	Shifting mutational constraints in the SARS-CoV-2 receptor-binding domain during viral evolution. Science, 2022, 377, 420-424.	6.0	140
14	Resilience of S309 and AZD7442 monoclonal antibody treatments against infection by SARS-CoV-2 Omicron lineage strains. Nature Communications, 2022, 13, .	5.8	93
15	ACE2-binding exposes the SARS-CoV-2 fusion peptide to broadly neutralizing coronavirus antibodies. Science, 2022, 377, 735-742.	6.0	85
16	Risk assessment and seroprevalence of SARS-CoV-2 infection in healthcare workers of COVID-19 and non-COVID-19 hospitals in Southern Switzerland. Lancet Regional Health - Europe, The, 2021, 1, 100013.	3.0	66
17	Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nature Medicine, 2021, 27, 717-726.	15.2	838
18	Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity. Cell, 2021, 184, 1171-1187.e20.	13.5	541

#	Article	IF	CITATIONS
19	Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature, 2021, 593, 136-141.	13.7	648
20	N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell, 2021, 184, 2332-2347.e16.	13.5	784
21	In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains. Nature, 2021, 596, 103-108.	13.7	222
22	Recurrent emergence of SARS-CoV-2 spike deletion H69/V70 and its role in the Alpha variant B.1.1.7. Cell Reports, 2021, 35, 109292.	2.9	375
23	Tackling COVID-19 with neutralizing monoclonal antibodies. Cell, 2021, 184, 3086-3108.	13.5	309
24	Spread of a SARS-CoV-2 variant through Europe in the summer of 2020. Nature, 2021, 595, 707-712.	13.7	363
25	SARS-CoV-2 immune evasion by the B.1.427/B.1.429 variant of concern. Science, 2021, 373, 648-654.	6.0	385
26	After the pandemic: perspectives on the future trajectory of COVID-19. Nature, 2021, 596, 495-504.	13.7	260
27	Broad sarbecovirus neutralization by a human monoclonal antibody. Nature, 2021, 597, 103-108.	13.7	220
28	SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape. Nature, 2021, 597, 97-102.	13.7	385
29	Discovery and Characterization of Spike Nâ€Terminal Domainâ€Binding Aptamers for Rapid SARSâ€CoVâ€2 Detection. Angewandte Chemie, 2021, 133, 21381-21385.	1.6	14
30	Lectins enhance SARS-CoV-2 infection and influence neutralizing antibodies. Nature, 2021, 598, 342-347.	13.7	230
31	Discovery and Characterization of Spike Nâ€Terminal Domainâ€Binding Aptamers for Rapid SARSâ€CoVâ€2 Detection. Angewandte Chemie - International Edition, 2021, 60, 21211-21215.	7.2	62
32	Interprotomer disulfide-stabilized variants of the human metapneumovirus fusion glycoprotein induce high titer-neutralizing responses. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	20
33	SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature, 2021, 599, 114-119.	13.7	1,041
34	Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines. Cell, 2021, 184, 5432-5447.e16.	13.5	131
35	Broad betacoronavirus neutralization by a stem helix–specific human antibody. Science, 2021, 373, 1109-1116.	6.0	262
36	Exceptionally potent human monoclonal antibodies are effective for prophylaxis and treatment of tetanus in mice. Journal of Clinical Investigation, 2021, 131, .	3.9	8

#	Article	IF	CITATIONS
37	Molecular basis of immune evasion by the Delta and Kappa SARS-CoV-2 variants. Science, 2021, 374, 1621-1626.	6.0	232
38	Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology. Cell, 2020, 183, 1024-1042.e21.	13.5	1,195
39	AncesTree: An interactive immunoglobulin lineage tree visualizer. PLoS Computational Biology, 2020, 16, e1007731.	1.5	18
40	Fc-optimized antibodies elicit CD8 immunity to viral respiratory infection. Nature, 2020, 588, 485-490.	13.7	95
41	A combination of two human monoclonal antibodies cures symptomatic rabies. EMBO Molecular Medicine, 2020, 12, e12628.	3.3	26
42	Structure-guided covalent stabilization of coronavirus spike glycoprotein trimers in the closed conformation. Nature Structural and Molecular Biology, 2020, 27, 942-949.	3.6	153
43	A perspective on potential antibody-dependent enhancement of SARS-CoV-2. Nature, 2020, 584, 353-363.	13.7	413
44	Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms. Science, 2020, 370, 950-957.	6.0	504
45	Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature, 2020, 583, 290-295.	13.7	1,695
46	Neutralizing Antibody and Soluble ACE2 Inhibition of a Replication-Competent VSV-SARS-CoV-2 and a Clinical Isolate of SARS-CoV-2. Cell Host and Microbe, 2020, 28, 475-485.e5.	5.1	380
47	Capsid protein structure in Zika virus reveals the flavivirus assembly process. Nature Communications, 2020, 11, 895.	5.8	85
48	Structure of the prefusion-locking broadly neutralizing antibody RVC20 bound to the rabies virus glycoprotein. Nature Communications, 2020, 11, 596.	5.8	28
49	Neutralizing Antibody and Soluble ACE2 Inhibition of a Replication-Competent VSV-SARS-CoV-2 and a Clinical Isolate of SARS-CoV-2. SSRN Electronic Journal, 2020, , 3606354.	0.4	16
50	AncesTree: An interactive immunoglobulin lineage tree visualizer. , 2020, 16, e1007731.		0
51	AncesTree: An interactive immunoglobulin lineage tree visualizer. , 2020, 16, e1007731.		0
52	AncesTree: An interactive immunoglobulin lineage tree visualizer. , 2020, 16, e1007731.		0
53	AncesTree: An interactive immunoglobulin lineage tree visualizer. , 2020, 16, e1007731.		0
54	Alternative conformations of a major antigenic site on RSV F. PLoS Pathogens, 2019, 15, e1007944.	2.1	29

#	Article	IF	CITATIONS
55	Structural Basis for Broad HIV-1 Neutralization by the MPER-Specific Human Broadly Neutralizing Antibody LN01. Cell Host and Microbe, 2019, 26, 623-637.e8.	5.1	56
56	Prophylactic efficacy of a human monoclonal antibody against MERS-CoV in the common marmoset. Antiviral Research, 2019, 163, 70-74.	1.9	8
57	Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion. Cell, 2019, 176, 1026-1039.e15.	13.5	558
58	Persistent Antibody Clonotypes Dominate the Serum Response to Influenza over Multiple Years and Repeated Vaccinations. Cell Host and Microbe, 2019, 25, 367-376.e5.	5.1	93
59	Comparison of Four Serological Methods and Two Reverse Transcription-PCR Assays for Diagnosis and Surveillance of Zika Virus Infection. Journal of Clinical Microbiology, 2018, 56, .	1.8	58
60	Structure-based design of a quadrivalent fusion glycoprotein vaccine for human parainfluenza virus types 1–4. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12265-12270.	3.3	70
61	Influenza hemagglutinin membrane anchor. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10112-10117.	3.3	115
62	Therapeutic Administration of Broadly Neutralizing FI6 Antibody Reveals Lack of Interaction Between Human IgG1 and Pig Fc Receptors. Frontiers in Immunology, 2018, 9, 865.	2.2	19
63	Tackling influenza with broadly neutralizing antibodies. Current Opinion in Virology, 2017, 24, 60-69.	2.6	121
64	Protection of calves by a prefusion-stabilized bovine RSV F vaccine. Npj Vaccines, 2017, 2, 7.	2.9	38
65	A Human Bi-specific Antibody against Zika Virus with High Therapeutic Potential. Cell, 2017, 171, 229-241.e15.	13.5	118
66	Antibody-based assay discriminates Zika virus infection from other flaviviruses. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8384-8389.	3.3	161
67	Immune stealth-driven O2 serotype prevalence and potential for therapeutic antibodies against multidrug resistant Klebsiella pneumoniae. Nature Communications, 2017, 8, 1991.	5.8	70
68	Anti-LPS antibodies protect against Klebsiella pneumoniae by empowering neutrophil-mediated clearance without neutralizing TLR4. JCI Insight, 2017, 2, .	2.3	29
69	Development of broadâ€spectrum human monoclonal antibodies for rabies postâ€exposure prophylaxis. EMBO Molecular Medicine, 2016, 8, 407-421.	3.3	73
70	Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection. Science, 2016, 353, 823-826.	6.0	675
71	Structure and Function Analysis of an Antibody Recognizing All Influenza A Subtypes. Cell, 2016, 166, 596-608.	13.5	320
72	Platelet-derived growth factor-α receptor is the cellular receptor for human cytomegalovirus gHgLgO trimer. Nature Microbiology, 2016, 1, 16082.	5.9	170

#	Article	IF	CITATIONS
73	Antibody-guided vaccine design: identification of protective epitopes. Current Opinion in Immunology, 2016, 41, 62-67.	2.4	53
74	Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody. Science, 2016, 351, 1339-1342.	6.0	370
75	SARS-like WIV1-CoV poised for human emergence. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3048-3053.	3.3	373
76	A LAIR1 insertion generates broadly reactive antibodies against malaria variant antigens. Nature, 2016, 529, 105-109.	13.7	140
77	Neutralization and clearance of GM-CSF by autoantibodies in pulmonary alveolar proteinosis. Nature Communications, 2015, 6, 7375.	5.8	74
78	Structures of complexes formed by H5 influenza hemagglutinin with a potent broadly neutralizing human monoclonal antibody. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9430-9435.	3.3	38
79	Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10473-10478.	3.3	198
80	Antibody-driven design of a human cytomegalovirus gHgLpUL128L subunit vaccine that selectively elicits potent neutralizing antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17965-17970.	3.3	116
81	Rapid development of broadly influenza neutralizing antibodies through redundant mutations. Nature, 2014, 516, 418-422.	13.7	300
82	Efficient Methods To Isolate Human Monoclonal Antibodies from Memory B Cells and Plasma Cells. Microbiology Spectrum, 2014, 2, .	1.2	39
83	Cross-neutralization of four paramyxoviruses by a human monoclonal antibody. Nature, 2013, 501, 439-443.	13.7	220
84	Broadly Neutralizing Antiviral Antibodies. Annual Review of Immunology, 2013, 31, 705-742.	9.5	447
85	A Neutralizing Antibody Selected from Plasma Cells That Binds to Group 1 and Group 2 Influenza A Hemagglutinins. Science, 2011, 333, 850-856.	6.0	1,092
86	Escape from Human Monoclonal Antibody Neutralization Affects In Vitro and In Vivo Fitness of Severe Acute Respiratory Syndrome Coronavirus. Journal of Infectious Diseases, 2010, 201, 946-955.	1.9	88
87	Crystal Structure and Size-Dependent Neutralization Properties of HK20, a Human Monoclonal Antibody Binding to the Highly Conserved Heptad Repeat 1 of gp41. PLoS Pathogens, 2010, 6, e1001195.	2.1	82
88	Clonal dissection of the human memory Bâ \in cell repertoire following infection and vaccination. European Journal of Immunology, 2009, 39, 1260-1270.	1.6	200
89	Structural Basis for Potent Cross-Neutralizing Human Monoclonal Antibody Protection against Lethal Human and Zoonotic Severe Acute Respiratory Syndrome Coronavirus Challenge. Journal of Virology, 2008, 82, 3220-3235.	1.5	144
90	Human monoclonal antibodies by immortalization of memory B cells. Current Opinion in Biotechnology, 2007, 18, 523-528.	3.3	89

#	Article	IF	CITATIONS
91	Efficient Methods To Isolate Human Monoclonal Antibodies from Memory B Cells and Plasma Cells. , 0, , 129-139.		1
92	Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature, 0, , .	13.7	101