
John W Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5169492/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Successional adaptive strategies revealed by correlating arbuscular mycorrhizal fungal abundance with host plant gene expression. Molecular Ecology, 2023, 32, 2674-2687.	3.9	11
2	Co-occurrence networks reveal more complexity than community composition in resistance and resilience of microbial communities. Nature Communications, 2022, 13, .	12.8	58
3	Agricultural Soil Management Practices Differentially Shape the Bacterial and Fungal Microbiomes of <i>Sorghum bicolor</i> . Applied and Environmental Microbiology, 2021, 87, .	3.1	13
4	Holo-omics for deciphering plant-microbiome interactions. Microbiome, 2021, 9, 69.	11.1	53
5	Fusarium: more than a node or a foot-shaped basal cell. Studies in Mycology, 2021, 98, 100116.	7.2	134
6	Genome-resolved metagenomics reveals role of iron metabolism in drought-induced rhizosphere microbiome dynamics. Nature Communications, 2021, 12, 3209.	12.8	93
7	Histoplasma capsulatum Isolated from Tadarida brasiliensis Bats Captured in Mexico Form a Sister Group to North American Class 2 Clade. Journal of Fungi (Basel, Switzerland), 2021, 7, 529.	3.5	7
8	Keep your friends close: Host compartmentalisation of microbial communities facilitates decoupling from effects of habitat fragmentation. Ecology Letters, 2021, 24, 2674-2686.	6.4	7
9	Fungal community assembly in drought-stressed sorghum shows stochasticity, selection, and universal ecological dynamics. Nature Communications, 2020, 11, 34.	12.8	176
10	Decades-old studies of fungi associated with mammalian lungs and modern DNA sequencing approaches help define the nature of the lung mycobiome. PLoS Pathogens, 2020, 16, e1008684.	4.7	10
11	Genomic and fossil windows into the secret lives of the most ancient fungi. Nature Reviews Microbiology, 2020, 18, 717-730.	28.6	56
12	Threats Posed by the Fungal Kingdom to Humans, Wildlife, and Agriculture. MBio, 2020, 11, .	4.1	275
13	Fungal Signature of Moisture Damage in Buildings: Identification by Targeted and Untargeted Approaches with Mycobiome Data. Applied and Environmental Microbiology, 2020, 86, .	3.1	12
14	Ectomycorrhizal fungal diversity predicted to substantially decline due to climate changes in North American Pinaceae forests. Journal of Biogeography, 2020, 47, 772-782.	3.0	42
15	Neurospora from Natural Populations: Population Genomics Insights into the Life History of a Model Microbial Eukaryote. Methods in Molecular Biology, 2020, 2090, 313-336.	0.9	16
16	The endozoan, small-mammal reservoir hypothesis and the life cycle of Coccidioides species. Medical Mycology, 2019, 57, S16-S20.	0.7	72
17	Kenneth Wells, 24 July 1927–19 July 2016. Mycologia, 2019, 111, 525-528.	1.9	0
18	Phylogenetic and physiological traits of oomycetes originally identified as <i>Lagenidium giganteum</i> from fly and mosquito larvae. Mycologia, 2019, 111, 408-422.	1.9	9

(

#	Article	IF	CITATIONS
19	A different suite: The assemblage of distinct fungal communities in water-damaged units of a poorly-maintained public housing building. PLoS ONE, 2019, 14, e0213355.	2.5	20
20	Transcriptomic analysis of field-droughted sorghum from seedling to maturity reveals biotic and metabolic responses. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 27124-27132.	7.1	129
21	Strong succession in arbuscular mycorrhizal fungal communities. ISME Journal, 2019, 13, 214-226.	9.8	86
22	Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4284-E4293.	7.1	391
23	Temperature sensitivities of extracellular enzyme <i>V</i> _{max} and <i>K</i> _m across thermal environments. Global Change Biology, 2018, 24, 2884-2897.	9.5	72
24	Glomeromycotina: what is a species and why should we care?. New Phytologist, 2018, 220, 963-967.	7.3	51
25	Phylogenetic taxon definitions for Fungi, Dikarya, Ascomycota and Basidiomycota. IMA Fungus, 2018, 9, 291-298.	3.8	26
26	Engineering Kluyveromyces marxianus as a Robust Synthetic Biology Platform Host. MBio, 2018, 9, .	4.1	58
27	Temperature acclimation and adaptation of enzyme physiology in Neurospora discreta. Fungal Ecology, 2018, 35, 78-86.	1.6	17
28	Survey of corticioid fungi in North American pinaceous forests reveals hyperdiversity, underpopulated sequence databases, and species that are potentially ectomycorrhizal. Mycologia, 2017, 109, 115-127.	1.9	31
29	A century later, resolving Joseph Grinnell's "striking case of adventitious coloration― Auk, 2017, 134, 551-552.	1.4	0
30	Sources of Fungal Genetic Variation and Associating It with Phenotypic Diversity. Microbiology Spectrum, 2017, 5, .	3.0	33
31	Importance of Resolving Fungal Nomenclature: the Case of Multiple Pathogenic Species in the <i>Cryptococcus</i> Genus. MSphere, 2017, 2, .	2.9	124
32	Continentalâ€level population differentiation and environmental adaptation in the mushroom <i><scp>S</scp>uillus brevipes</i> . Molecular Ecology, 2017, 26, 2063-2076.	3.9	55
33	Microbes and associated soluble and volatile chemicals on periodically wet household surfaces. Microbiome, 2017, 5, 128.	11.1	45
34	The Microbiome and Metabolites in Fermented Pu-erh Tea as Revealed by High-Throughput Sequencing and Quantitative Multiplex Metabolite Analysis. PLoS ONE, 2016, 11, e0157847.	2.5	67
35	Description of three novel Lagenidium (Oomycota) species causing infection in mammals. Revista Iberoamericana De Micologia, 2016, 33, 83-91.	0.9	8
36	(2441) Proposal to conserve the name <i>Aspergillus</i> (<i>Fungi</i> : <i>Eurotiales</i> :) Tj ETQq0 0 0 rgBT /	Overlock 10 0.7	D Tf 50 67 Td 11

65, 631-632.

#	Article	IF	CITATIONS
37	Genome Diversity, Recombination, and Virulence across the Major Lineages of <i>Paracoccidioides</i> . MSphere, 2016, 1, .	2.9	109
38	Choosing one name for pleomorphic fungi: The example of <i>Aspergillus</i> versus <i>Eurotium</i> , <i>Neosartorya</i> and <i>Emericella</i> . Taxon, 2016, 65, 593-601.	0.7	18
39	Comparative Phylogenomics of Pathogenic and Nonpathogenic Species. G3: Genes, Genomes, Genetics, 2016, 6, 235-244.	1.8	38
40	Comment on "Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism― Science, 2016, 351, 826-826.	12.6	59
41	Sequence-based classification and identification of Fungi. Mycologia, 2016, 108, 1049-1068.	1.9	154
42	Neurospora discreta as a model to assess adaptation of soil fungi to warming. BMC Evolutionary Biology, 2015, 15, 198.	3.2	34
43	Genomic sequencing reveals historical, demographic and selective factors associated with the diversification of the fireâ€associated fungus <i>Neurospora discreta</i> . Molecular Ecology, 2015, 24, 5657-5675.	3.9	32
44	The Dynamic Genome and Transcriptome of the Human Fungal Pathogen Blastomyces and Close Relative Emmonsia. PLoS Genetics, 2015, 11, e1005493.	3.5	57
45	Endogenous Small RNA Mediates Meiotic Silencing of a Novel DNA Transposon. G3: Genes, Genomes, Genetics, 2015, 5, 1949-1960.	1.8	34
46	Passive dust collectors for assessing airborne microbial material. Microbiome, 2015, 3, 46.	11.1	55
47	A continental view of pineâ€associated ectomycorrhizal fungal spore banks: a quiescent functional guild with a strong biogeographic pattern. New Phytologist, 2015, 205, 1619-1631.	7.3	126
48	Genetic isolation between two recently diverged populations of a symbiotic fungus. Molecular Ecology, 2015, 24, 2747-2758.	3.9	100
49	<i>Mycothermus thermophilus</i> gen. et comb. nov., a new home for the itinerant thermophile <i>Scytalidium thermophilum</i> (<i>Torula thermophila</i>). Mycologia, 2015, 107, 319-327.	1.9	24
50	Fungi isolated from Miscanthus and sugarcane: biomass conversion, fungal enzymes, and hydrolysis of plant cell wall polymers. Biotechnology for Biofuels, 2015, 8, 38.	6.2	41
51	<i>Lagenidium giganteum</i> Pathogenicity in Mammals. Emerging Infectious Diseases, 2015, 21, 290-297.	4.3	24
52	Clonal reproduction in fungi. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8901-8908.	7.1	104
53	Evolutionary Perspectives on Human Fungal Pathogens. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a019588.	6.2	13
54	Commentaries: Name Changes in Medically Important Fungi and Their Implications for Clinical Practice. Journal of Clinical Microbiology, 2015, 53, 1056-1062.	3.9	65

#	Article	IF	CITATIONS
55	Chamber Bioaerosol Study: Outdoor Air and Human Occupants as Sources of Indoor Airborne Microbes. PLoS ONE, 2015, 10, e0128022.	2.5	168
56	Airborne Bacterial Communities in Residences: Similarities and Differences with Fungi. PLoS ONE, 2014, 9, e91283.	2.5	120
57	Appropriately Sized Genera and Appropriately Ranked Higher Taxa. IMA Fungus, 2014, 5, A1-A2.	3.8	3
58	A global multilocus analysis of the model fungus Neurospora reveals a single recent origin of a novel genetic system. Molecular Phylogenetics and Evolution, 2014, 78, 136-147.	2.7	20
59	Endemism and functional convergence across the North American soil mycobiome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6341-6346.	7.1	482
60	<i>Aspergillus</i> , its sexual states and the new International Code of Nomenclature. Mycologia, 2014, 106, 1051-1062.	1.9	43
61	Cloning the Mating-Type Genes of Schizophyllum commune: A Historical Perspective. , 2014, , 265-282.		2
62	A Unique Signal Distorts the Perception of Species Richness and Composition in High-Throughput Sequencing Surveys of Microbial Communities: a Case Study of Fungi in Indoor Dust. Microbial Ecology, 2013, 66, 735-741.	2.8	52
63	Extracellular ammonia at sites of pulmonary infection with Coccidioides posadasii contributes to severity of the respiratory disease. Microbial Pathogenesis, 2013, 59-60, 19-28.	2.9	48
64	Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. ISME Journal, 2013, 7, 1262-1273.	9.8	603
65	MycoBank gearing up for new horizons. IMA Fungus, 2013, 4, 371-379.	3.8	170
66	Genome Wide Association Identifies Novel Loci Involved in Fungal Communication. PLoS Genetics, 2013, 9, e1003669.	3.5	92
67	Comparative Transcriptomics of the Saprobic and Parasitic Growth Phases in Coccidioides spp. PLoS ONE, 2012, 7, e41034.	2.5	79
68	The poetry of mycological accomplishment and challenge. Fungal Biology Reviews, 2011, 25, 3-13.	4.7	3
69	One Fungus = One Name: DNA and fungal nomenclature twenty years after PCR. IMA Fungus, 2011, 2, 113-120.	3.8	169
70	Massive Changes in Genome Architecture Accompany the Transition to Self-Fertility in the Filamentous Fungus <i>Neurospora tetrasperma</i> . Genetics, 2011, 189, 55-69.	2.9	69
71	Population genomics and local adaptation in wild isolates of a model microbial eukaryote. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2831-2836.	7.1	238
72	Genetic Architecture of a Reinforced, Postmating, Reproductive Isolation Barrier between Neurospora Species Indicates Evolution via Natural Selection. PLoS Genetics, 2011, 7, e1002204.	3.5	50

#	Article	IF	CITATIONS
73	Independent Subtilases Expansions in Fungi Associated with Animals. Molecular Biology and Evolution, 2011, 28, 3395-3404.	8.9	51
74	The Amsterdam Declaration on Fungal Nomenclature. IMA Fungus, 2011, 2, 105-111.	3.8	320
75	Dating the molecular clock in fungi – how close are we?. Fungal Biology Reviews, 2010, 24, 1-16.	4.7	232
76	(117–119) Proposals to make the pre–publication deposit of key nomenclatural information in a recognized repository a requirement for valid publication of organisms treated as fungi under the <i>Code</i> . Taxon, 2010, 59, 660-662.	0.7	10
77	Mushrooms: Morphological complexity in the fungi. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11655-11656.	7.1	27
78	Population genomic sequencing of <i>Coccidioides</i> fungi reveals recent hybridization and transposon control. Genome Research, 2010, 20, 938-946.	5.5	166
79	Comparative genomic analyses of the human fungal pathogens <i>Coccidioides</i> and their relatives. Genome Research, 2009, 19, 1722-1731.	5.5	295
80	The Fungi. Current Biology, 2009, 19, R840-R845.	3.9	279
81	Fungal species: thoughts on their recognition, maintenance and selection. , 2007, , 313-339.		9
82	Rhynie chert: a window into a lost world of complex plant–fungus interactions. New Phytologist, 2007, 174, 475-479.	7.3	44
83	Eukaryotic microbes, species recognition and the geographic limits of species: examples from the kingdom Fungi. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 1947-1963.	4.0	291
84	Dating divergences in the Fungal Tree of Life: review and new analyses. Mycologia, 2006, 98, 838-849.	1.9	279
85	Multilocus sequence data reveal extensive phylogenetic species diversity within the <i>Neurospora discreta</i> complex. Mycologia, 2006, 98, 436-446.	1.9	40
86	New findings of <i>Neurospora</i> in Europe and comparisons of diversity in temperate climates on continental scales. Mycologia, 2006, 98, 550-559.	1.9	31
87	Research Coordination Networks: a phylogeny for kingdom Fungi (Deep Hypha). Mycologia, 2006, 98, 829-837.	1.9	114
88	Dating divergences in the Fungal Tree of Life: review and new analyses. Mycologia, 2006, 98, 838-849.	1.9	330
89	The Novel and Endemic Pathogen Hypotheses: Competing Explanations for the Origin of Emerging Infectious Diseases of Wildlife. Conservation Biology, 2005, 19, 1441-1448.	4.7	208
90	Long-oligomer microarray profiling in Neurospora crassa reveals the transcriptional program underlying biochemical and physiological events of conidial germination. Nucleic Acids Research, 2005, 33, 6469-6485.	14.5	95

#	Article	IF	CITATIONS
91	Neurospora in Temperate Forests of Western North America. Mycologia, 2004, 96, 66.	1.9	34
92	Positive Directional Selection in the Proline-Rich Antigen (PRA) Gene Among the Human Pathogenic Fungi Coccidioides immitis, C. posadasii and Their Closest Relatives. Molecular Biology and Evolution, 2004, 21, 1134-1145.	8.9	40
93	Organization of genetic variation in individuals of arbuscular mycorrhizal fungi. Nature, 2004, 427, 733-737.	27.8	231
94	Neurosporain temperate forests of western North America. Mycologia, 2004, 96, 66-74.	1.9	58
95	Neurospora in temperate forests of western North America. Mycologia, 2004, 96, 66-74.	1.9	28
96	Phylogeography of the fungal pathogen Histoplasma capsulatum. Molecular Ecology, 2003, 12, 3383-3401.	3.9	303
97	A MULTILOCUS GENEALOGICAL APPROACH TO PHYLOGENETIC SPECIES RECOGNITION IN THE MODEL EUKARYOTE NEUROSPORA. Evolution; International Journal of Organic Evolution, 2003, 57, 2703-2720.	2.3	385
98	REPRODUCTIVE ISOLATION AND PHYLOGENETIC DIVERGENCE IN NEUROSPORA: COMPARING METHODS OF SPECIES RECOGNITION IN A MODEL EUKARYOTE. Evolution; International Journal of Organic Evolution, 2003, 57, 2721-2741.	2.3	215
99	Phylogeny of Opisthokonta and the evolution of multicellularity and complexity in Fungi and Metazoa. International Journal of Astrobiology, 2003, 2, 203-211.	1.6	97
100	Fungal multilocus sequence typing — it's not just for bacteria. Current Opinion in Microbiology, 2003, 6, 351-356.	5.1	153
101	Cryptic species inStachybotrys chartarum. Mycologia, 2002, 94, 814-822.	1.9	85
102	Recombination and genetic differentiation in the mycorrhizal fungus <i>Cenococcum geophilum</i> Fr. Mycologia, 2002, 94, 772-780.	1.9	49
103	The fitness of filamentous fungi. Trends in Microbiology, 2002, 10, 474-481.	7.7	210
104	A gene genealogical approach to recognize phylogenetic species boundaries in the lichenized fungus <i>Letharia</i> . Mycologia, 2001, 93, 38-53.	1.9	167
105	Soil isolation and molecular identification of <i>Coccidioides immitis</i> . Mycologia, 2000, 92, 406-410.	1.9	67
106	Phylogenetic Species Recognition and Species Concepts in Fungi. Fungal Genetics and Biology, 2000, 31, 21-32.	2.1	1,585
107	Pathogenic Clones versus Environmentally Driven Population Increase: Analysis of an Epidemic of the Human Fungal Pathogen <i>Coccidioides immitis</i> . Journal of Clinical Microbiology, 2000, 38, 807-813.	3.9	84
108	Primers for genotyping single nucleotide polymorphisms and microsatellites in the pathogenic fungus Coccidioides immitis. Molecular Ecology, 1999, 8, 1082-1084.	3.9	38

3

#	Article	IF	CITATIONS
109	THEEVOLUTION OFASEXUALFUNGI: Reproduction, Speciation and Classification. Annual Review of Phytopathology, 1999, 37, 197-246.	7.8	472
110	Cause of sea fan death in the West Indies. Nature, 1998, 394, 137-138.	27.8	219
111	Evolutionary relationships in <i>Aspergillus</i> section <i>Fumigati</i> inferred from partial β-tubulin and hydrophobin DNA sequences. Mycologia, 1998, 90, 831-845.	1.9	138
112	A set of electrophoretic molecular markers for strain typing and population genetic studies of Histoplasma capsulatum. Electrophoresis, 1997, 18, 1047-1053.	2.4	30
113	IsPenicilliummonophyletic? An evaluation of phylogeny in the family Trichocomaceae from 18S, 5.8S and ITS ribosomal DNA sequence data. Mycologia, 1995, 87, 210-222.	1.9	153
114	Is Penicillium Monophyletic? An Evaluation of Phylogeny in the Family Trichocomaceae from 18S, 5.8S and ITS Ribosomal DNA Sequence Data. Mycologia, 1995, 87, 210.	1.9	109
115	18S rRNA gene sequences and supraordinal classification of the Erysiphales. Mycologia, 1994, 86, 212-216.	1.9	56
116	Pneumocystis cariniia and the ustomycetous red yeast fungi. Molecular Microbiology, 1993, 8, 425-426.	2.5	16
117	O'Neil Ray Collins, 1931–1989. Mycologia, 1993, 85, 868-872.	1.9	0
118	Higher Taxa of Basidiomycetes: An 18S Rrna Gene Perspective. Mycologia, 1993, 85, 923-936.	1.9	153
119	Article 59: reinterpretation or revision?. Taxon, 1992, 41, 91-98.	0.7	23
120	Polymerase Chain Reaction (PCR) Primers for Amplifying and Sequencing Nuclear 18S rDNA from Lichenized Fungi. Mycologia, 1992, 84, 589-592.	1.9	245
121	Amplification and Sequencing of Dna from Fungal Herbarium Specimens. Mycologia, 1990, 82, 175-184.	1.9	104
122	Sources of Fungal Genetic Variation and Associating It with Phenotypic Diversity. , 0, , 635-655.		3
123	Evolution of Human-Pathogenic Fungi: Phylogenies and Species. , 0, , 113-P1.		5
124	The Evolution of <i>MAT</i> : The Ascomycetes. , 0, , 1-18.		22
125	MAT and Its Role in the Homothallic Ascomycete Sordaria macrospora. , 0, , 171-188.		6

126 The Evolutionary Implications of an Asexual Lifestyle Manifested by Penicillium marneffei. , 0, , 201-212.

#	Article	IF	CITATIONS
127	<i>MAT</i> , Mating, Switching, and Pathogenesis in <i>Candida albicans, Candida dubliniensis</i> , and <i>Candida glabrata</i> ., 0, , 213-234.		4
128	Ascomycetes: the Candida MAT Locus: Comparing MAT in the Genomes of Hemiascomycetous Yeasts. , 0, , 247-263.		7
129	The Origin of Multiple Mating Types in the Model Mushrooms <i>Coprinopsis cinerea</i> and <i>Schizophyllum commune</i> ., 0, , 283-300.		22
130	Pheromones and Pheromone Receptors in Schizophyllum commune Mate Recognition: Retrospective of a Half-Century of Progress and a Look Ahead. , 0, , 301-315.		5
131	Analysis of Mating-Type Locus Organization and Synteny in Mushroom Fungi: Beyond Model Species. , 0, , 317-331.		11
132	Evolution of the Mating-Type Locus: The Basidiomycetes. , 0, , 19-34.		25
133	Dikaryons, Diploids, and Evolution. , 0, , 333-348.		25
134	History of the Mating Types in <i>Ustilago maydis</i> ., 0, , 349-375.		5
135	Mating in the Smut Fungi: From a to b to the Downstream Cascades. , 0, , 377-387.		10
136	Bipolar and Tetrapolar Mating Systems in the Ustilaginales. , 0, , 389-404.		2
137	Sex in the Rest: Mysterious Mating in the Chytridiomycota and Zygomycota. , 0, , 405-418.		7
138	How the Genome Is Organized in the Glomeromycota. , 0, , 419-430.		3
139	Trisporic Acid and Mating in Zygomycetes. , 0, , 431-443.		7
140	Sexual Reproduction in Plant Pathogenic Oomycetes: Biology and Impact on Disease. , 0, , 445-458.		21
141	Mechanisms of Homothallism in Fungi and Transitions between Heterothallism and Homothallism. , 0, , 35-57.		43
142	Why Bother with Sex? Answers from Experiments with Yeast and Other Organisms. , 0, , 489-506.		3
143	Why Sex Is Good: On Fungi and Beyond. , 0, , 527-534.		18
144	Mating-Type Locus Control of Cell Identity. , 0, , 59-73.		5

#	Article	IF	CITATIONS
145	Cochliobolus and Podospora: Mechanisms of Sex Determination and the Evolution of Reproductive Lifestyle. , 0, , 91-121.		6
146	Sexual Reproduction and Significance of MAT in the Aspergilli. , 0, , 123-142.		12
147	The mat Genes of Schizosaccharomyces pombe: Expression, Homothallic Switch, and Silencing. , 0, , 143-157.		8
148	Decisions, Decisions: Donor Preference during Budding Yeast Mating-Type Switching. , 0, , 159-170.		7
149	Evolution of <i>MAT</i> in the <i>Candida</i> Species Complex: Sex, Ploidy, and Complete Sexual Cycles in <i>C. lusitaniae, C. guilliermondii</i> , and <i>C. krusei</i> , 0, , 235-245.		1
150	Origin, Evolution, and Extinction of Asexual Fungi: Experimental Tests Using Cryptococcus neoformans. , 0, , 459-475.		0
151	Evolution of Silencing at the Mating-Type Loci in Hemiascomycetes. , 0, , 189-200.		Ο
152	Rewiring Transcriptional Circuitry: Mating-Type Regulation in Saccharomyces cerevisiae and Candida albicans as a Model for Evolution. , 0, , 75-89.		2
153	Sex in Natural Populations of Cryptococcus gattii. , 0, , 477-488.		1