Lynette Beattie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5169469/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Marginal zone B cells acquire dendritic cell functions by trogocytosis. Science, 2022, 375, eabf7470.	12.6	36
2	Plasmodium berghei Hsp90 contains a natural immunogenic I-Ab-restricted antigen common to rodent and human Plasmodium species. Current Research in Immunology, 2021, 2, 79-92.	2.8	9
3	Development of <i>Plasmodium</i> â€specific liverâ€resident memory CD8 ⁺ T cells after heatâ€killed sporozoite immunization in mice. European Journal of Immunology, 2021, 51, 1153-1165.	2.9	5
4	Harnessing liver-resident memory T cells for protection against malaria. Expert Review of Vaccines, 2021, 20, 127-141.	4.4	6
5	CD8+ and CD4+ T Cells Infiltrate into the Brain during <i>Plasmodium berghei</i> ANKA Infection and Form Long-Term Resident Memory. Journal of Immunology, 2021, 207, 1578-1590.	0.8	14
6	Display of Native Antigen on cDC1 That Have Spatial Access to Both T and B Cells Underlies Efficient Humoral Vaccination. Journal of Immunology, 2020, 205, 1842-1856.	0.8	20
7	A Natural Peptide Antigen within the Plasmodium Ribosomal Protein RPL6 Confers Liver TRM Cell-Mediated Immunity against Malaria in Mice. Cell Host and Microbe, 2020, 27, 950-962.e7.	11.0	45
8	Glycolipid-peptide vaccination induces liver-resident memory CD8 ⁺ T cells that protect against rodent malaria. Science Immunology, 2020, 5, .	11.9	43
9	Raster adaptive optics for video rate aberration correction and large FOV multiphoton imaging. Biomedical Optics Express, 2020, 11, 1032.	2.9	9
10	Raster Adaptive Optics for Video Rate Laser Scanning Microscopy with Large Field of View Correction. , 2020, , .		0
11	Rapid loss of group 1 innate lymphoid cells during blood stage Plasmodium infection. Clinical and Translational Immunology, 2018, 7, e1003.	3.8	16
12	Macrophage Transactivation for Chemokine Production Identified as a Negative Regulator of Granulomatous Inflammation Using Agent-Based Modeling. Frontiers in Immunology, 2018, 9, 637.	4.8	6
13	In vivo imaging of systemic transport and elimination of xenobiotics and endogenous molecules in mice. Archives of Toxicology, 2017, 91, 1335-1352.	4.2	64
14	A Liver Capsular Network of Monocyte-Derived Macrophages Restricts Hepatic Dissemination of Intraperitoneal Bacteria by Neutrophil Recruitment. Immunity, 2017, 47, 374-388.e6.	14.3	171
15	Combined Immune Therapy for the Treatment of Visceral Leishmaniasis. PLoS Neglected Tropical Diseases, 2016, 10, e0004415.	3.0	33
16	CD4+ Recent Thymic Emigrants Are Recruited into Granulomas during Leishmania donovani Infection but Have Limited Capacity for Cytokine Production. PLoS ONE, 2016, 11, e0163604.	2.5	9
17	Type I Interferons Regulate Immune Responses in Humans with Blood-Stage Plasmodium falciparum Infection. Cell Reports, 2016, 17, 399-412.	6.4	88
18	Bone marrow-derived and resident liver macrophages display unique transcriptomic signatures but similar biological functions. Journal of Hepatology, 2016, 65, 758-768.	3.7	197

Lynette Beattie

#	Article	IF	CITATIONS
19	Lessons from other diseases: granulomatous inflammation in leishmaniasis. Seminars in Immunopathology, 2016, 38, 249-260.	6.1	59
20	Spatiotemporal Characterization of the Cellular and Molecular Contributors to Liver Fibrosis in a Murine Hepatotoxic-Injury Model. American Journal of Pathology, 2016, 186, 524-538.	3.8	28
21	Blimp-1-Dependent IL-10 Production by Tr1 Cells Regulates TNF-Mediated Tissue Pathology. PLoS Pathogens, 2016, 12, e1005398.	4.7	92
22	IFNAR1-Signalling Obstructs ICOS-mediated Humoral Immunity during Non-lethal Blood-Stage Plasmodium Infection. PLoS Pathogens, 2016, 12, e1005999.	4.7	52
23	The Neurotrophic Receptor Ntrk2 Directs Lymphoid Tissue Neovascularization during Leishmania donovani Infection. PLoS Pathogens, 2015, 11, e1004681.	4.7	18
24	Bile canalicular dynamics in hepatocyte sandwich cultures. Archives of Toxicology, 2015, 89, 1861-1870.	4.2	49
25	IL-17A–Producing γÎ^T Cells Suppress Early Control of Parasite Growth by Monocytes in the Liver. Journal of Immunology, 2015, 195, 5707-5717.	0.8	25
26	A Transcriptomic Network Identified in Uninfected Macrophages Responding to Inflammation Controls Intracellular Pathogen Survival. Cell Host and Microbe, 2013, 14, 357-368.	11.0	44
27	A Petri Net Model of Granulomatous Inflammation: Implications for IL-10 Mediated Control of Leishmania donovani Infection. PLoS Computational Biology, 2013, 9, e1003334.	3.2	36
28	Functional complexity of the Leishmania granuloma and the potential of in silico modeling. Frontiers in Immunology, 2013, 4, 35.	4.8	39
29	IL-10-Producing Th1 Cells and Disease Progression Are Regulated by Distinct CD11c+ Cell Populations during Visceral Leishmaniasis. PLoS Pathogens, 2012, 8, e1002827.	4.7	60
30	B Cell: T Cell Interactions Occur within Hepatic Granulomas during Experimental Visceral Leishmaniasis. PLoS ONE, 2012, 7, e34143.	2.5	28
31	Compartment-Specific Remodeling of Splenic Micro-Architecture during Experimental Visceral Leishmaniasis. American Journal of Pathology, 2011, 179, 23-29.	3.8	50
32	Leishmania-host interactions: what has imaging taught us?. Cellular Microbiology, 2011, 13, 1659-1667.	2.1	33
33	Interferon Regulatory Factor 7 Contributes to the Control of <i>Leishmania donovani</i> in the Mouse Liver. Infection and Immunity, 2011, 79, 1057-1066.	2.2	21
34	<i>Leishmania donovani</i> â€induced expression of signal regulatory protein α on Kupffer cells enhances hepatic invariant NKTâ€cell activation. European Journal of Immunology, 2010, 40, 117-123.	2.9	27
35	Innate Killing of Leishmania donovani by Macrophages of the Splenic Marginal Zone Requires IRF-7. PLoS Pathogens, 2010, 6, e1000813.	4.7	62
36	Dynamic Imaging of Experimental Leishmania donovani-Induced Hepatic Granulomas Detects Kupffer Cell-Restricted Antigen Presentation to Antigen-Specific CD8+ T Cells. PLoS Pathogens, 2010, 6, e1000805.	4.7	122

Lynette Beattie

#	Article	IF	CITATIONS
37	Inhibition of receptor tyrosine kinases restores immunocompetence and improves immune-dependent chemotherapy against experimental leishmaniasis in mice. Journal of Clinical Investigation, 2010, 120, 1204-1216.	8.2	47
38	A Petri Net Model of Granulomatous Inflammation. Lecture Notes in Computer Science, 2010, , 1-3.	1.3	0
39	Dendritic Cells Matured by Inflammation Induce CD86-Dependent Priming of Naive CD8+ T Cells in the Absence of Their Cognate Peptide Antigen. Journal of Immunology, 2009, 183, 7095-7103.	0.8	21
40	SIGNR1-Negative Red Pulp Macrophages Protect against Acute Streptococcal Sepsis after Leishmania donovani-Induced Loss of Marginal Zone Macrophages. American Journal of Pathology, 2009, 175, 1107-1115.	3.8	29
41	Transgenic Leishmania and the immune response to infection. Parasite Immunology, 2008, 30, 255-266.	1.5	34
42	Posttranscriptional Regulation of Il10 Gene Expression Allows Natural Killer Cells to Express Immunoregulatory Function. Immunity, 2008, 29, 295-305.	14.3	175
43	Plasmodium Strain Determines Dendritic Cell Function Essential for Survival from Malaria. PLoS Pathogens, 2007, 3, e96.	4.7	72
44	CD8+ T Lymphocyte-Mediated Loss of Marginal Metallophilic Macrophages following Infection with <i>Plasmodium chabaudi chabaudi AS</i> . Journal of Immunology, 2006, 177, 2518-2526.	0.8	42
45	Potencies of Human Immunodeficiency Virus Protease Inhibitors In Vitro against Plasmodium falciparum and In Vivo against Murine Malaria. Antimicrobial Agents and Chemotherapy, 2006, 50, 639-648.	3.2	130
46	The importance of the spleen in malaria. Trends in Parasitology, 2005, 21, 75-80.	3.3	171
47	Dendritic cells and follicular dendritic cells express a novel ligand for CD38 which influences their maturation and antibody responses. Immunology, 2004, 113, 318-327.	4.4	13