Ãke Borg

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/5168721/publications.pdf
Version: 2024-02-01

Breast and Prostate Cancer Risks for Male<i> BRCA1 \lli> and < i > BRCA2 < /i> Pathogenic Variant Carriers
Risks of breast and ovarian cancer for women harboring pathogenic missense variants in BRCA1 and
2 BRCA2 compared with those harboring protein truncating variants. Genetics in Medicine, 2022, 24, 119-129.

Interval breast cancer is associated with interferon immune response. European Journal of Cancer, 2022, 162, 194-205.

Cancer Risks Associated With <i>BRCA1</i> and <i>BRCA2</i> Pathogenic Variants. Journal of Clinical Oncology, 2022, 40, 1529-1541.

Polygenic risk modeling for prediction of epithelial ovarian cancer risk. European Journal of Human
Genetics, 2022, 30, 349-362.

Abstract OT2-30-01: Nordictrip, a translational randomized phase-3study exploring the effect of the
6 addition of capecitabine to carboplatinum-based chemotherapy in early â€œtriple negativeâ $€$-breast cancer,
$0.9 \quad 0$ ClinicalTrials.gov Identifier: NCTO4335669. Cancer Research, 2022, 82, OT2-30-01-OT2-30-01.

Abstract P2-08-11: How reliable are biomarkers assessed on a core needle biopsy? A study of paired core
7 needle biopsies and surgical specimens in early breast cancer. Cancer Research, 2022, 82, P2-08-11-P2-08-11.

Merged Testing for Colorectal Cancer Syndromes and Reâ€evaluation of Genetic Variants Improve
8 Diagnostic Yield: results from a nationâ€wide prospective cohort. Genes Chromosomes and Cancer, 2022, , .

Association between breast cancer risk and disease aggressiveness: Characterizing underlying gene expression patterns. International Journal of Cancer, 2021, 148, 884-894.

The spatial RNA integrity number assay for in situ evaluation of transcriptome quality.
$10 \quad$ Communications Biology, 2021, 4, 57.
4.4

11

> Molecular analyses of triple-negative breast cancer in the young and elderly. Breast Cancer Research, $2021,23,20$.
$5.0 \quad 23$

Distinct mechanisms of resistance to fulvestrant treatment dictate level of ER independence and
12 selective response to CDK inhibitors in metastatic breast cancer. Breast Cancer Research, 2021, 23, 26.
5.0

19

Breast Cancer Risk Genes â€" Association Analysis in More than 113,000 Women. New England Journal of Medicine, 2021, 384, 428-439.

Preexisting Somatic Mutations of Estrogen Receptor Alpha (<i>ESR1</i>) in Early-Stage Primary Breast Cancer. JNCI Cancer Spectrum, 2021, 5, pkab028.
2.9

20
<i>CDKN2A</i> genetic testing in melanoma-prone families in Sweden in the years 2015â€ ' 2020 : 2
implications for novel national recommendations. Acta OncolÃ3gica, 2021, 60, 888-896.
The predictive ability of the 313 variantâ€"based polygenic risk score for contralateral breast cancer risk prediction in women of European ancestry with a heterozygous BRCA1 or BRCA2 pathogenic variant. Genetics in Medicine, 2021, 23, 1726-1737.

17 A search for modifying genetic factors in CHEK2:c. 1100 delC breast cancer patients. Scientific Reports,
2021, 11, 14763.
3.3

3

Serum selenium, selenoprotein P and glutathione peroxidase 3 as predictors of mortality and

21	Association of Genomic Domains in <i>BRCA1</i〉 and <i>BRCA2</i> with Prostate Cancer Risk and Aggressiveness. Cancer Research, 2020, 80, 624-638.	0.9	39
22	Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nature Genetics, 2020, 52, 56-73.	21.4	120
23	Cancer Risks Associated With Germline <i>PALB2</i> Pathogenic Variants: An International Study of 524 Families. Journal of Clinical Oncology, 2020, 38, 674-685.	1.6	270
24	Male Breast Carcinoma after Irradiation and Long-Term Phenothiazine Exposure: A Case Report. Case Reports in Oncology, 2020, 13, 956-961.	0.7	1
25	Polygenic risk scores and breast and epithelial ovarian cancer risks for carriers of BRCA1 and BRCA2 pathogenic variants. Genetics in Medicine, 2020, 22, 1653-1666.	2.4	82

27 Prognostic implications of the expression levels of different immunoglobulin heavy chain-encoding 5.2 25
RNAs in early breast cancer. Npj Breast Cancer, 2020, 6, 28.
12.8 5328 breast cancers. Nature Communications, 2020, 11, 3747.
Comprehensive molecular comparison of BRCA1 hypermethylated and BRCA1 mutated triple negative

Breast cancer survival in Nordic BRCA2 mutation carriersâ $€$ "unconventional association with

Breast cancer survival in Nordic BRCA2 mutation carriersâ $€$ "unconventional association with 29 Breast cancer survival in Nordic BRCA2 mutation carriersa€ unconventional 29 Breast cancer survival in Nordic BRCA2 mutation carriersa€ unconventional
6.4
6.4 8 821.4265
Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses. Nature Genetics, 2020, 52, 572-581. 30Integrating spatial gene expression and breast tumour morphology via deep learning. Nature
22.5208
31 Biomedical Engineering, 2020, 4, 827-834.7.148
Characterization of the Cancer Spectrum in Men With
Germline<i>BRCA1</i>and<i>BRCA2</i>Pathogenic Variants. JAMA Oncology, 2020, 6, 1218.Analysis of fusion transcripts indicates widespread deregulation of snoRNAs and their host genes inbreast cancer. International Journal of Cancer, 2020, 146, 3343-3353.
8Ovarian and Breast Cancer Risks Associated With Pathogenic Variants in <i>RAD51C</i> and6.3
<i>RAD51D</i>. Journal of the National Cancer Institute, 2020, 112, 1242-1250.1.332Transcriptomeâ€wide association study of breast cancer risk by estrogenâ€receptor status. Genetic
Epidemiology, 2020, 44, 442-468.

```
37 The Spectrum of FANCM Protein Truncating Variants in European Breast Cancer Cases. Cancers, 2020,
    12, }292
```

The mutational landscape of the <scp>SCAN</Scp> â€B realâ€world primary breast cancer transcriptome.

EMBO Molecular Medicine, 2020, 12, e12118.
6.9

Defining the mutational landscape of 3,217 primary breast cancer transcriptomes through large-scale
39 RNA-seq within the Sweden Cancerome Analysis Network: Breast Project (SCAN-B; NCT03430492).. Journal of Clinical Oncology, 2020, 38, 518-518.

Agreement between molecular subtyping and surrogate subtype classification: a contemporary

44 population-based study of ER-positive/HER2-negative primary breast cancer. Breast Cancer Research and
2.5

23 Treatment, 2019, 178, 459-467.
$45 \quad$ High-definition spatial transcriptomics for in situ tissue profiling. Nature Methods, 2019, 16, 987-990.
47 Mendelian randomisation study of height and body mass index as modifiers of ovarian cancer risk in22,588 BRCA1 and BRCA2 mutation carriers. British Journal of Cancer, 2019, 121, 180-192.
19
Refinement of breast cancer molecular classification by miRNA expression profiles. BMC Genomics, 2.8 75
2019, 20, 503.
2019, 20, 503.

2.0	7

Functional characterization of novel germline <i>TP53</i> variants in Swedish families. Clinical
2.0 Genetics, 2019, 96, 216-225.

Genome-wide association and transcriptome studies identify target genes and risk loci for breast
Metachronous and Synchronous Occurrence of 5 Primary Malignancies in a Female Patient between
$55 \quad 1997$ and 2013: A Case Report with Germline and Somatic Genetic Analysis. Case Reports in Oncology

The <i>BRCAl<|i> c. 5096G\>A p.Arg1699Gln (R1699Q) intermediate risk variant: breast and ovarian
56 cancer risk estimation and recommendations for clinical management from the ENIGMA consortium.
3.2

50
Journal of Medical Genetics, 2018, 55, 15-20.
Individuals with FANCM biallelic mutations do not develop Fanconi anemia, but show risk for breast
57 cancer, chemotherapy toxicity and may display chromosome fragility. Genetics in Medicine, 2018, 20,
$2.4 \quad 59$
452-457.

58 Accuracy of self-reported family history of cancer, mutation status and tumor characteristics in patients with early onset breast cancer. Acta OncolÃ3gica, 2018, 57, 595-603.
1.8

19

59 BRCAsearch: written pre-test information and BRCA1/2 germline mutation testing in unselected patients with newly diagnosed breast cancer. Breast Cancer Research and Treatment, 2018, 168, 117-126.
$2.5 \quad 14$

60 Germline mutations in BRCA1 and BRCA2 incidentally revealed in a biobank research study: experiences
from re-contacting mutation carriers and relatives. Journal of Community Genetics, 2018, 9, 201-208.
1.25

61	Clinical Value of RNA Sequencingâ€ "Based Classifiers for Prediction of the Five Conventional Breast Cancer Biomarkers: A Report From the Population-Based Multicenter Sweden Cancerome Analysis Networkâ€"Breast Initiative. JCO Precision Oncology, 2018, 2, 1-18.	3.0	101
62	Cytohesin 1 regulates homing and engraftment of human hematopoietic stem and progenitor cells. Blood, 2017, 129, 950-958.	1.4	17
63	MA12.01 Next Generation Sequencing Based Clinical Framework for Analyses of Treatment Predictive Mutations and Gene Fusions in Lung Cancer. Journal of Thoracic Oncology, 2017, 12, S409-S410.	1.1	0
64	Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nature Genetics, 2017, 49, 680-691.	21.4	356
65	Case-control analysis of truncating mutations in DNA damage response genes connects TEX15 and FANCD2 with hereditary breast cancer susceptibility. Scientific Reports, 2017, 7, 681.	3.3	20
66	HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nature Medicine, 2017, 23, 517-525.	30.7	769
67	Somatic mutations reveal asymmetric cellular dynamics in the early human embryo. Nature, 2017, 543, 714-718.	27.8	229

68 FANCM mutation c.5791C\>T is a risk factor for triple-negative breast cancer in the Finnish population. Breast Cancer Research and Treatment, 2017, 166, 217-226.
2.5

26

Expanding the genotypeâ€"phenotype spectrum in hereditary colorectal cancer by gene panel testing.
Familial Cancer, 2017, 16, 195-203.
Familial Cancer, 2017, 16, 195-203.
1.9

55

Clinical framework for next generation sequencing based analysis of treatment predictive mutations
and multiplexed gene fusion detection in non-small cell lung cancer. Oncotarget, 2017, 8, 34796-34810.
1.8

45

71 Frequent miRNA-convergent fusion gene events in breast cancer. Nature Communications, 2017, 8, 788.
12.8

```
75 Direct Transcriptional Consequences of Somatic Mutation in Breast Cancer. Cell Reports, 2016, 16,
\begin{tabular}{|c|c|c|c|}
\hline 77 & The topography of mutational processes in breast cancer genomes. Nature Communications, 2016, 7, 11383. & 12.8 & 235 \\
\hline 78 & Multiregion Whole-Exome Sequencing Uncovers the Genetic Evolution and Mutational Heterogeneity of Early-Stage Metastatic Melanoma. Cancer Research, 2016, 76, 4765-4774. & 0.9 & 86 \\
\hline 79 & An integrated genomics analysis of epigenetic subtypes in human breast tumors links DNA methylation patterns to chromatin states in normal mammary cells. Breast Cancer Research, 2016, 18, 27. & 5.0 & 67 \\
\hline 80 & Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science, 2016, 353, 78-82. & 12.6 & 1,983 \\
\hline
\end{tabular}
81 Genome-wide RNAi Screen Identifies Cohesin Genes as Modifiers of Renewal and Differentiation in\(6.4 \quad 75\)
BRCA1/BRCA2 founder mutations and cancer risks: impact in the western Danish population. Familial Cancer, 2016, 15, 507-512.
\(1.9 \quad 9\)
\begin{tabular}{|c|c|c|c|}
\hline 83 & Breast cancer risk variants at 6 q 25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170. Nature Genetics, 2016, 48, 374-386. & 21.4 & 125 \\
\hline 84 & Mutation Screening of 1,237 Cancer Genes across Six Model Cell Lines of Basal-Like Breast Cancer. PLoS ONE, 2015, 10, e0144528. & 2.5 & 6 \\
\hline 85 & Mutational and gene fusion analyses of primary large cell and large cell neuroendocrine lung cancer. Oncotarget, 2015, 6, 22028-22037. & 1.8 & 61 \\
\hline
\end{tabular}

Nonsense Mutations in the Shelterin Complex Genes ACD and TERF2IP in Familial Melanoma. Journal of
the National Cancer Institute, 2015, 107, .

The Sweden Cancerome Analysis Network - Breast (SCAN-B) Initiative: a large-scale multicenter infrastructure towards implementation of breast cancer genomic analyses in the clinical routine.
Passenger strand loading in overexpression experiments using microRNA mimics. RNA Biology, 2015, 12,
\(787-791\).

Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells. Genome Research, 2015, 25, 814-824.
5.5

69
Molecular Characterization of Melanoma Cases in Denmark Suspected of Cenetic Predisposition. PLoS
95 ONE, 2015, 10, e0122662.

Molecular stratification of metastatic melanoma using gene expression profiling : Prediction of survival outcome and benefit from molecular targeted therapy. Oncotarget, 2015, 6, 12297-12309.
1.8
\[
\begin{aligned}
& \text { Remarkable similarities of chromosomal rearrangements between primary human breast cancers and } \\
& \text { matched distant metastases as revealed by whole-genome sequencing. Oncotarget, 2015, 6, 37169-37184. } \\
& 98 \quad \begin{array}{l}
\text { Loss of CITED1, an MITF regulator, drives a phenotype switch<i> in vitro</i> and can predict clinical } \\
\text { outcome in primary melanoma tumours. PeerJ, 2015, 3, e788. }
\end{array} \\
& 99 \quad \begin{array}{l}
\text { Aberrant Activation of the PI3K/mTOR Pathway Promotes Resistance to Sorafenib in AML. Blood, 2015, } \\
126,2472-2472 \text {. }
\end{array} \text {. }
\end{aligned}
\]

The HER2-Encoded miR-4728-3p Regulates ESR1 through a Non-Canonical Internal Seed Interaction. PLoS ONE, 2014, 9, e97200.

109 Detecting EGFR alterations in clinical specimensâ€"pitfalls and necessities. Virchows Archiv Fur
Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2013, 463, 755-764.

Mutual Exclusivity Analysis of Genetic and Epigenetic Drivers in Melanoma Identifies a Link Between pl4ARF and RARI² Signaling. Molecular Cancer Research, 2013, 11, 1166-1178.
3.4

23

High expression of <scp> <i>ZNF703 </i> </scp> independent of amplification indicates worse prognosis in patients with luminal B breast cancer. Cancer Medicine, 2013, 2, 437-446.
2.8

Histological specificity of alterations and expression of \(\langle\mathrm{i}\rangle \mathrm{KIT}<|\mathrm{i}\rangle\) and \(\langle\mathrm{i}\rangle \mathrm{KITLG}<|\mathrm{i}\rangle\) in nonâ \(€\) small cell lung carcinoma. Genes Chromosomes and Cancer, 2013, 52, 1088-1096.

Distinct Gene Expression Signatures in Lynch Syndrome and Familial Colorectal Cancer Type X. PLoS ONE, 2013, 8, e71755.

A BAP1 Mutation in a Danish Family Predisposes to Uveal Melanoma and Other Cancers. PLoS ONE, 2013, 8, e72144.

BRCA1 R1699Q variant displaying ambiguous functional abrogation confers intermediate breast and ovarian cancer risk. Journal of Medical Genetics, 2012, 49, 525-532.
\(3.2 \quad 97\)

The Retinoblastoma Gene Undergoes Rearrangements in <i>BRCA1</i〉-Deficient Basal-like Breast
Cancer. Cancer Research, 2012, 72, 4028-4036.

Molecular Profiling Reveals Low- and High-Grade Forms of Primary Melanoma. Clinical Cancer
Research, 2012, 18, 4026-4036.
Association Between \& lt;emph type="ital"\&gt;BRCA1\&|t;/emph\&gt; and \&lt;emph
118 type="ital"\&gt;BRCA2\&lt;/emph\&gt; Mutations and Survival in Women With Inval
Cancer. JAMA - Journal of the American Medical Association, 2012, 307, 382.
119 Global H3K27 trimethylation and EZH2 abundance in breast tumor subtypes. Molecular Oncology, 2012,
6, 494-506.

120 Mutational Processes Molding the Genomes of 21 Breast Cancers. Cell, 2012, 149, 979-993.
28.9

1,673
121 The Life History of 21 Breast Cancers. Cell, 2012, 149, 994-1007. 28.9 ..... 1,249
Prevalence of germline <i>TP53</i> mutations and history of Liâ€"Fraumeni syndrome in families with122 childhood adrenocortical tumors, choroid plexus tumors, and rhabdomyosarcoma: A

Characterisation of amplification patterns and target genes at chromosome 11q13 in CCND1-amplified sporadic and familial breast tumours. Breast Cancer Research and Treatment, 2012, 133, 583-594.
\begin{tabular}{|c|c|c|c|}
\hline 129 & Common variants of the BRCA1 wild-type allele modify the risk of breast cancer in BRCA1 mutation carriers. Human Molecular Genetics, 2011, 20, 4732-4747. & 2.9 & 32 \\
\hline 130 & Genetic Variation at 9p22.2 and Ovarian Cancer Risk for BRCA1 and BRCA2 Mutation Carriers. Journal of the National Cancer Institute, 2011, 103, 105-116. & 6.3 & 40 \\
\hline 131 & Identification of New MicroRNAs in Paired Normal and Tumor Breast Tissue Suggests a Dual Role for the <i>ERBB2/Her2</i> Gene. Cancer Research, 2011, 71, 78-86. & 0.9 & 191 \\
\hline 132 & Endothelial Induced EMT in Breast Epithelial Cells with Stem Cell Properties. PLoS ONE, 2011, 6, e23833. & 2.5 & 87 \\
\hline 133 & Swedish CDKN2A mutation carriers do not present the atypical mole syndrome phenotype. Melanoma Research, 2010, 20, 266-272. & 1.2 & 8 \\
\hline 134 & Oral contraceptives and postmenopausal hormones and risk of contralateral breast cancer among BRCA1 and BRCA2 mutation carriers and noncarriers: the WECARE Study. Breast Cancer Research and Treatment, 2010, 120, 175-183. & 2.5 & 22 \\
\hline 135 & Adjuvant systemic therapy for breast cancer in BRCA1/BRCA2 mutation carriers in a population-based study of risk of contralateral breast cancer. Breast Cancer Research and Treatment, 2010, 123, 491-498. & 2.5 & 57 \\
\hline
\end{tabular}

Reproductive factors and risk of contralateral breast cancer by BRCA1 and BRCA2 mutation status:
Common Genetic Variants and Modification of Penetrance of BRCA2-Associated Breast Cancer. PLoS
Genetics, 2010, 6, e1001183.
146 Genetic profiles distinguish different types of hereditary ovarian cancer. Oncology Reports, 2010, 24, 885-95.
\begin{tabular}{|c|c|c|c|}
\hline 147 & Multiple metastases from cutaneous malignant melanoma patients may display heterogeneous genomic and epigenomic patterns. Melanoma Research, 2010, 20, 381-91. & 1.2 & 22 \\
\hline 148 & CXCL14 is an autocrine growth factor for fibroblasts and acts as a multi-modal stimulator of prostate tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3414-3419. & 7.1 & 204 \\
\hline 149 & MiRNA expression in urothelial carcinomas: Important roles of miRâ€ 10 a, miRâ€222, miRâ€ 25b, miRâ€ \(\neq\) and miRâ€452 for tumor stage and metastasis, and frequent homozygous losses of miRâ€31. International Journal of Cancer, 2009, 124, 2236-2242. & 5.1 & 222 \\
\hline 150 & Indistinguishable genomic profiles and shared prognostic markers in undifferentiated pleomorphic sarcoma and leiomyosarcoma: different sides of a single coin?. Laboratory Investigation, 2009, 89, 668-675. & 3.7 & 42 \\
\hline 151 & The non-coding RNA of the multidrug resistance-linked vault particle encodes multiple regulatory small RNAs. Nature Cell Biology, 2009, 11, 1268-1271. & 10.3 & 147 \\
\hline
\end{tabular}
152 Higher occurrence of childhood cancer in families with germline mutations in BRCA2, MMR andCDKN2A genes. Familial Cancer, 2008, 7, 331-337.zoom-in array comparative genomic hybridization (aCCH). Human Mutation, 2008, 29, 555-564.
155 validation of the practical performance of different array platforms. European Journal of Human ..... 2.8 ..... 30 Genetics, 2008, 16, 786-792.
Recurrent gross mutations of the PTEN tumor suppressor gene in breast cancers with deficient DSB repair. Nature Genetics, 2008, 40, 102-107.21.4316
2.5 ..... 23
Array-CGH reveals hidden gene dose changes in children with acute lymphoblastic leukaemia and a normal or failed karyotype by G-banding. British Journal of Haematology, 2008, 140, 572-577.Gene products of chromosome \(11 q\) and their association with CCNDlgene amplification and tamoxifen5.058resistance in premenopausal breast cancer. Breast Cancer Research, 2008, 10, R81.

The CD44+/CD24-phenotype is enriched in basal-like breast tumors. Breast Cancer Research, 2008, 10,
\begin{tabular}{|c|c|c|c|}
\hline 163 & BRCA1 and BRCA2 mutations in Danish families with hereditary breast and/or ovarian cancer. Acta OncolÃ³gica, 2008, 47, 772-777. & 1.8 & 46 \\
\hline 164 & BRCA1 and BRCA2 point mutations and large rearrangements in breast and ovarian cancer families in Northern Poland. Oncology Reports, 2008, 19, 263-8. & 2.6 & 51 \\
\hline 165 & Tiling resolution array comparative genomic hybridization, expression and methylation analyses of dup(1q) in Burkitt lymphomas and pediatric high hyperdiploid acute lymphoblastic leukemias reveal clustered near-centromeric breakpoints and overexpression of genes in 1q22-32.3. Human Molecular Genetics. 2007, 16. 2215-2225. & 2.9 & 50 \\
\hline 166 & Estrogen Receptor \(\hat{1}^{2}\) Expression Is Associated with Tamoxifen Response in ERÎ \(\pm\)-Negative Breast Carcinoma. Clinical Cancer Research, 2007, 13, 1987-1994. & 7.0 & 160 \\
\hline 167 & Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7564-7569. & 7.1 & 445 \\
\hline 168 & Duplication \(16 q 12.1\) â \(\epsilon^{\prime \prime} q 22.1\) characterized by array CGH in a girl with spina bifida. European Journal of Medical Genetics, 2007, 50, 237-241. & 1.3 & 17 \\
\hline 169 & Recurrent 10q22-q23 Deletions: A Cenomic Disorder on 10q Associated with Cognitive and Behavioral Abnormalities. American Journal of Human Genetics, 2007, 80, 938-947. & 6.2 & 101 \\
\hline 170 & Tumor Genome Wide DNA Alterations Assessed by Array CGH in Patients with Poor and Excellent Survival following Operation for Colorectal Cancer. Cancer Informatics, 2007, 3, 117693510700300. & 1.9 & 13 \\
\hline 171 & Highâ€resolution genomic profiles of breast cancer cell lines assessed by tiling BAC array comparative genomic hybridization. Genes Chromosomes and Cancer, 2007, 46, 543-558. & 2.8 & 176 \\
\hline 172 & Comprehensive mutational analysis of a cohort of Swedish Cornelia de Lange syndrome patients. European Journal of Human Genetics, 2007, 15, 143-149. & 2.8 & 41 \\
\hline 173 & Cytogenetic characterization and gene expression profiling of the trastuzumab-resistant breast cancer cell line JIMT-1. Cancer Genetics and Cytogenetics, 2007, 172, 95-106. & 1.0 & 19 \\
\hline 174 & Microarray analysis of gliomas reveals chromosomal position-associated gene expression patterns and identifies potential immunotherapy targets. Journal of Neuro-Oncology, 2007, 85, 11-24. & 2.9 & 25 \\
\hline 175 & Absence of the common IGF1 19 CA-repeat allele is more common among BRCA1 mutation carriers than among non-carriers from BRCA1 families. Familial Cancer, 2007, 6, 445-452. & 1.9 & 6 \\
\hline
\end{tabular}

176 Accurate Detection of the microRNA Transcriptome in a Leukemia Progression Model.. Blood, 2007, 110,
1.4

0
866-866.
2.5

51
177 by tiling resolution arrayâ̂based comparative genomic hybridisation reveals clustered breakpoints at
9p13.2 and 20q11.2. British Journal of Haematology, 2006, 135, 492-499.

The contribution of the hereditary nonpolyposis colorectal cancer syndrome to the development of
1.4

125 ovarian cancer. Gynecologic Oncology, 2006, 101, 238-243.

Array-based comparative genomic hybridization characterization ofÂcytogenetically polyclonal myeloid malignancies. Cancer Cenetics and Cytogenetics, 2006, 169, 179-180.
1.0

2
Cene expression profiles relate to SS18/SSX fusion type in synovial sarcoma. International Journal of
Cancer, 2006, 118, 1165-1172. \(\quad\)\begin{tabular}{l} 
Chromosome 5 imbalance mapping in breast tumors from BRCAl and BRCA2 mutation carriers and \\
sporadic breast tumors. International Journal of Cancer, 2006, 119, 1052-1060.
\end{tabular}\(\quad 5.1\)
199 BRCA1 and BRCA2 mutation analysis in breast-ovarian cancer families from northeastern Poland.Human Mutation, 2003, 21, 553-554.
201 Predicting the future of breast cancer. Nature Medicine, 2003, 9, 16-18.
202 Molecular classification of familial non- <i>BRCA1/BRCA2</i> breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2532-2537.7.1182
203 Lack of HIN-1 methylation in BRCA1-linked and "BRCA1-like" breast tumors. Cancer Research, 2003, 63, 0.9 ..... 23
Patterns of chromosomal imbalances defines subgroups of breast cancer with distinct clinical
204 features and prognosis. A study of 305 tumors by comparative genomic hybridization. Cancer Research, ..... 0.9 ..... 134 2003, 63, 8861-8.
205 A Naturally Occurring Allele of BRCA1 C
Biology and Therapy, 2002, 1, 497-501. ..... 3.4 ..... 20
206 BRCA1 andBRCA2 mutations among breast cancer patients from the Philippines. International Journal of Cancer, 2002, 98, 596-603.5.183
207 Survival in prospectively ascertained familial breast cancer: Analysis of a series stratified by tumour characteristics,BRCAmutations and oophorectomy. International Journal of Cancer, 2002, 101, 555-559.A genomic map of a \(6-\mathrm{Mb}\) region at \(13 \mathrm{q} 21-\mathrm{q} 22\) implicated in cancer development: identification and
209 Increased CpG methylation of the estrogen recept

\(5.9 \quad 39\)
27.01,669Gene-Expression Profiles in Hereditary Breast Cancer. New England Journal of Medicine, 2001, 344,539-548.
5.1 ..... 18Deletion mapping of chromosome segment \(11 q 24-q 25\), exhibiting extensive allelic loss in early onsetbreast cancer. International Journal of Cancer, 2001, 92, 208-213.Haplotype analysis and age estimation of the 113insRCDKN2A founder mutation in Swedish melanoma
217 First BRCA1 and BRCA2 Gene Testing Implemented in the Health Care System of Stockholm. Genetic 1.7 ..... 13 Testing and Molecular Biomarkers, 2001, 5, 1-8.
GermlineBRCA1 andHMLH1 mutations in a family with male and female breast carcinoma. , 2000, 85, 796-800.
\begin{tabular}{|c|c|c|c|}
\hline 219 & Somatic frameshift alterations in mononucleotide repeatâ€containing genes in different tumor types from an HNPCC family with germline MSH2 mutation. Genes Chromosomes and Cancer, 2000, 29, 33-39. & 2.8 & 30 \\
\hline 220 & Multiple copies of mutantBRCA1 andBRCA2 alleles in breast tumors from germ-line mutation carriers. Genes Chromosomes and Cancer, 2000, 28, 432-442. & 2.8 & 28 \\
\hline 221 & Multiple founder effects and geographical clustering of BRCA1 and BRCA2 families in Finland. European Journal of Human Genetics, 2000, 8, 757-763. & 2.8 & 75 \\
\hline 222 & Cytogenetic Heterogeneity and Clonal Evolution in Synchronous Bilateral Breast Carcinomas and their Lymph Node Metastases from a Male Patient without Any Detectable BRCA2 Germline Mutation. Cancer Cenetics and Cytogenetics, 2000, 118, 42-47. & 1.0 & 17 \\
\hline 223 & Amplification and Deletion of Topoisomerase \(\| \hat{I} \pm\) Associate with ErbB-2 Amplification and Affect Sensitivity to Topoisomerase II Inhibitor Doxorubicin in Breast Cancer. American Journal of Pathology, 2000, 156, 839-847. & 3.8 & 361 \\
\hline 224 & BRCA1 1675delA and 1135insA Account for One Third of Norwegian Familial Breast-Ovarian Cancer and Are Associated with Later Disease Onset than Less Frequent Mutations. Disease Markers, 1999, 15, 79-84. & 1.3 & 30 \\
\hline 225 & Somatic genetic alterations inBRCA2-associated and sporadic male breast cancer. Genes Chromosomes and Cancer, 1999, 24, 56-61. & 2.8 & 50 \\
\hline
\end{tabular}

A somaticBRCA2 mutation in RER+ endometrial carcinomas that specifically deletes the amino-terminal transactivation domain. , 1999, 24, 207-212.
227 Chromosomal aberrations in breast cancer: A comparison between cytogenetics and comparative genomic hybridization. , 1999, 25, 115-122.3737
228 Loss of heterozygosity at 11q23.1 and survival in breast cancer: Results of a large European study.Genes Chromosomes and Cancer, 1999, 25, 212-221.2.834.Characterization of topoisomerase II? gene amplification and deletion in breast cancer. Genes\(229 \quad \begin{aligned} & \text { Characterization of topoisomerase ll? gene amp } \\ & \text { Chromosomes and Cancer, 1999, 26, 142-150. }\end{aligned}\)2.8172hMLH1, hMSH2 andhMSH6 mutations in hereditary non-polyposis colorectal cancer families fromSouthern Sweden. , 1999, 83, 197-202.26
Amplification and Overexpression of p40 Subunit of Eukaryotic Translation Initiation Factor 3 in 3.8 ..... 132
231 Breast and Prostate Cancer. American Journal of Pathology, 1999, 154, 1777-1783. ..... 132
235 Steroid receptors in hereditary breast carcinomas associated with BRCA1 or BRCA2 mutations or unknown susceptibility genes. Cancer, 1998, 83, 310-319.
4.1

170

BRCA1-related breast cancer in Austrian breast and ovarian cancer families: SpecificBRCA1 mutationsTranscription of Human Endogenous Retroviral Sequences Related to Mouse Mammary Tumor Virus in241 Human Breast and Placenta: Similar Pattern in Most Malignant and Nonmalignant Breast Tissues*. AIDS1.1Research and Human Retroviruses, 1997, 13, 507-516.
Identification of TP53 Gene Mutations in Uterine Corpus Cancer with Short Follow-up. Gynecologic Oncology, 1997, 67, 295-302.
243 Amplification of cyclin D1 in squamous cell carcinoma of the head and neck and the prognostic value243 of chromosomal abnormalities and cyclin D1 overexpression. , 1997, 79, 380-389.164
\(244 \begin{aligned} & \text { Activated cell cycle checkpoints } \\ & \text { cytometry. , 1997, 29, 321-327. }\end{aligned}\)7
245 Amplification of cyclin D1 in squamous cell carcinoma of the head and neck and the prognostic value of chromosomal abnormalities and cyclin D1 overexpression. Cancer, 1997, 79, 380-389.
4.1 ..... 4
Multiple splicing variants of the estrogen receptor are present in individual human breast tumors.2.573
Journal of Steroid Biochemistry and Molecular Biology, 1996, 59, 251-260. 246
247 Genetic Predisposition to Breast Cancer. Acta Oncolã̉3gica, 1996, 35, 1-8. ..... 1.8```

